Abstract

Femtosecond pulse characterization and compensation using multiphoton intrapulse interference phase scan (MIIPS) [Opt. Lett. 29, 775 (2004) ] was rigorously tested. MIIPS was found to have 3 mrad precision within the 90 nm bandwidth of the pulses. Group-velocity dispersion measurements of glass and quartz provided independent accuracy tests. Phase distortions from high-numerical-aperture objectives were measured and corrected using MIIPS, an important requirement for reproducible two-photon microscopy. Phase compensation greatly improved the pulse-shaping results through a more accurate delivery of continuous and binary phase functions to the sample. MIIPS measurements were possible through the scattering of biological tissue, a consideration for biomedical imaging.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  2. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. 3: Probing microscopic chemical environments," J. Phys. Chem. A 108, 53-58 (2004).
    [CrossRef]
  3. R. Trebino and D. J. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses--frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101-1111 (1993).
    [CrossRef]
  4. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, "Frequency-resolved optical gating with the use of second-harmonic generation," J. Opt. Soc. Am. B 11, 2206-2215 (1994).
    [CrossRef]
  5. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  6. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  7. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
    [CrossRef]
  8. C. Dorrer, B. de Beauvoir, C. Le Blanc, S. Ranc, J. P. Rousseau, P. Rousseau, and J. P. Chambaret, "Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1644-1646 (1999).
    [CrossRef]
  9. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  10. A. M. Weiner, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
    [CrossRef]
  11. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
    [CrossRef] [PubMed]
  12. R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
    [CrossRef] [PubMed]
  13. C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999).
    [CrossRef]
  14. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Quantum control of coherent anti-Stokes Raman processes," Phys. Rev. A 65, 043408 (2002).
    [CrossRef]
  15. A. Neogi, H. Yoshida, T. Mozume, and O. Wada, "Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well," Opt. Commun. 159, 225-229 (1999).
    [CrossRef]
  16. J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information storage and retrieval through quantum phase," Science 287, 463-465 (2000).
    [CrossRef] [PubMed]
  17. V. V. Lozovoy and M. Dantus, "Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation," Chem. Phys. Lett. 351, 213-221 (2002).
    [CrossRef]
  18. Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000).
    [CrossRef]
  19. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
    [CrossRef]
  20. D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," J. Opt. Soc. Am. B 15, 1615-1619 (1998).
    [CrossRef]
  21. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
    [CrossRef]
  22. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
    [CrossRef]
  23. D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, "Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping," Appl. Phys. B 70, S125-S131 (2000).
    [CrossRef]
  24. M. R. Armstrong, P. Plachta, E. A. Ponomarev, and R. J. D. Miller, "Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics," Opt. Lett. 26, 1152-1154 (2001).
    [CrossRef]
  25. A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control," Opt. Lett. 27, 306-308 (2002).
    [CrossRef]
  26. F. L. Legare, J. M. Fraser, D. M. Villeneuve, and P. B. Corkum, "Adaptive compression of intense 250-nm-bandwidth laser pulses," Appl. Phys. B 74, S279-S282 (2002).
    [CrossRef]
  27. U. Siegner, M. Haiml, J. Kunde, and U. Keller, "Adaptive pulse compression by two-photon absorption in semiconductors," Opt. Lett. 27, 315-317 (2002).
    [CrossRef]
  28. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, "Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector," Opt. Lett. 28, 278-280 (2003).
    [CrossRef] [PubMed]
  29. B. Broers, H. B. V. Vandenheuvell, and L. D. Noordam, "Large interference effects of small chirp observed in 2-photon absorption," Opt. Commun. 91, 57-61 (1992).
    [CrossRef]
  30. K. A. Walowicz, I. Pastrik, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
    [CrossRef]
  31. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
    [CrossRef]
  32. M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001).
    [CrossRef]
  33. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003).
    [CrossRef] [PubMed]
  34. J. M. Dela Cruz, I. Pastirk, M. Comstock, and M. Dantus, "Multiphoton intrapulse interference. 8. Coherent control through scattering tissue," Opt. Express 12, 4144-4149 (2004).
    [CrossRef]
  35. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2005).
    [CrossRef]
  36. I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416(2005).
    [CrossRef]
  37. J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
    [CrossRef]
  38. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating," Opt. Lett. 23, 1474-1476 (1998).
    [CrossRef]
  39. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Second-harmonic generation frequency-resolved optical gating in the single-cycle regime," IEEE J. Quantum Electron. 35, 459-478 (1999).
    [CrossRef]
  40. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B 70, (Suppl.) S67-S75 (2000).
    [CrossRef]
  41. S. Diddams and J. C. Diels, "Dispersion measurements with white-light interferometry," J. Opt. Soc. Am. B 13, 1120-1129 (1996).
    [CrossRef]
  42. I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," J. Opt. Soc. Am. 55, 1205-1209 (1965).
    [CrossRef]
  43. Ohara Corp., "Optical glass catalog data," retrieved May 2, 2005, http://www.oharacorp.com/swf/catalog.html.
  44. J. Jasapara and W. Rudolph, "Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives," Opt. Lett. 24, 777-779 (1999).
    [CrossRef]
  45. I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, "Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens," Opt. Lett. 29, 2282-2284 (2004).
    [CrossRef] [PubMed]
  46. D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, "Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective," IEEE J. Quantum Electron. 35, 479-486 (1999).
    [CrossRef]
  47. M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives," J. Microsc. 191, 141-150 (1998).
    [CrossRef] [PubMed]
  48. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998).
    [CrossRef]
  49. V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 65, 1952-1967 (2005).

2005

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2005).
[CrossRef]

I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416(2005).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 65, 1952-1967 (2005).

2004

2003

2002

V. V. Lozovoy and M. Dantus, "Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation," Chem. Phys. Lett. 351, 213-221 (2002).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Quantum control of coherent anti-Stokes Raman processes," Phys. Rev. A 65, 043408 (2002).
[CrossRef]

K. A. Walowicz, I. Pastrik, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

F. L. Legare, J. M. Fraser, D. M. Villeneuve, and P. B. Corkum, "Adaptive compression of intense 250-nm-bandwidth laser pulses," Appl. Phys. B 74, S279-S282 (2002).
[CrossRef]

A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control," Opt. Lett. 27, 306-308 (2002).
[CrossRef]

U. Siegner, M. Haiml, J. Kunde, and U. Keller, "Adaptive pulse compression by two-photon absorption in semiconductors," Opt. Lett. 27, 315-317 (2002).
[CrossRef]

2001

M. R. Armstrong, P. Plachta, E. A. Ponomarev, and R. J. D. Miller, "Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics," Opt. Lett. 26, 1152-1154 (2001).
[CrossRef]

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

2000

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, "Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping," Appl. Phys. B 70, S125-S131 (2000).
[CrossRef]

Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information storage and retrieval through quantum phase," Science 287, 463-465 (2000).
[CrossRef] [PubMed]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B 70, (Suppl.) S67-S75 (2000).
[CrossRef]

1999

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, "Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective," IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Second-harmonic generation frequency-resolved optical gating in the single-cycle regime," IEEE J. Quantum Electron. 35, 459-478 (1999).
[CrossRef]

A. Neogi, H. Yoshida, T. Mozume, and O. Wada, "Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well," Opt. Commun. 159, 225-229 (1999).
[CrossRef]

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999).
[CrossRef]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
[CrossRef]

J. Jasapara and W. Rudolph, "Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives," Opt. Lett. 24, 777-779 (1999).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
[CrossRef]

C. Dorrer, B. de Beauvoir, C. Le Blanc, S. Ranc, J. P. Rousseau, P. Rousseau, and J. P. Chambaret, "Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1644-1646 (1999).
[CrossRef]

1998

1997

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

1996

1994

1993

1992

B. Broers, H. B. V. Vandenheuvell, and L. D. Noordam, "Large interference effects of small chirp observed in 2-photon absorption," Opt. Commun. 91, 57-61 (1992).
[CrossRef]

A. M. Weiner, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

1965

Ahn, J.

J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information storage and retrieval through quantum phase," Science 287, 463-465 (2000).
[CrossRef] [PubMed]

Amat-Roldan, I.

Armstrong, M. R.

Artigas, D.

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Backus, S.

Baltuska, A.

Bardeen, C. J.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999).
[CrossRef]

Barty, C. P.

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Beach, N. M.

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Brakenhoff, G. J.

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives," J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Broers, B.

B. Broers, H. B. V. Vandenheuvell, and L. D. Noordam, "Large interference effects of small chirp observed in 2-photon absorption," Opt. Commun. 91, 57-61 (1992).
[CrossRef]

Bucksbaum, P. H.

J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information storage and retrieval through quantum phase," Science 287, 463-465 (2000).
[CrossRef] [PubMed]

Carpenter, S. D.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999).
[CrossRef]

Chambaret, J. P.

Comstock, M.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2005).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, M. Comstock, and M. Dantus, "Multiphoton intrapulse interference. 8. Coherent control through scattering tissue," Opt. Express 12, 4144-4149 (2004).
[CrossRef]

Corkum, P. B.

F. L. Legare, J. M. Fraser, D. M. Villeneuve, and P. B. Corkum, "Adaptive compression of intense 250-nm-bandwidth laser pulses," Appl. Phys. B 74, S279-S282 (2002).
[CrossRef]

Cormack, I. G.

Cruz, J. M.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2005).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. 3: Probing microscopic chemical environments," J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, M. Comstock, and M. Dantus, "Multiphoton intrapulse interference. 8. Coherent control through scattering tissue," Opt. Express 12, 4144-4149 (2004).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003).
[CrossRef] [PubMed]

Dantus, M.

I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416(2005).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2005).
[CrossRef]

V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 65, 1952-1967 (2005).

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. 3: Probing microscopic chemical environments," J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, M. Comstock, and M. Dantus, "Multiphoton intrapulse interference. 8. Coherent control through scattering tissue," Opt. Express 12, 4144-4149 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastrik, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

V. V. Lozovoy and M. Dantus, "Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation," Chem. Phys. Lett. 351, 213-221 (2002).
[CrossRef]

de Beauvoir, B.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, "Frequency-resolved optical gating with the use of second-harmonic generation," J. Opt. Soc. Am. B 11, 2206-2215 (1994).
[CrossRef]

Diddams, S.

Diels, J. C.

Dorrer, C.

Dudovich, N.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Quantum control of coherent anti-Stokes Raman processes," Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Efimov, A.

Feurer, T.

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

Fittinghoff, D. N.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, "Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective," IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Fraser, J. M.

F. L. Legare, J. M. Fraser, D. M. Villeneuve, and P. B. Corkum, "Adaptive compression of intense 250-nm-bandwidth laser pulses," Appl. Phys. B 74, S279-S282 (2002).
[CrossRef]

Fuji, T.

Gallmann, L.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B 70, (Suppl.) S67-S75 (2000).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
[CrossRef]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Hacker, M.

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

Haiml, M.

Herzog, R.

Hornung, T.

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, "Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping," Appl. Phys. B 70, S125-S131 (2000).
[CrossRef]

Hunter, J.

Iaconis, C.

Itoh, M.

Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000).
[CrossRef]

Jasapara, J.

Joffre, M.

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

R. Trebino and D. J. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses--frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101-1111 (1993).
[CrossRef]

Kangas, M.

I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416(2005).
[CrossRef]

Kaplan, D.

Kapteyn, H.

Keller, U.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Kobayashi, T.

Krause, J. L.

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Kunde, J.

Le Blanc, C.

Legare, F. L.

F. L. Legare, J. M. Fraser, D. M. Villeneuve, and P. B. Corkum, "Adaptive compression of intense 250-nm-bandwidth laser pulses," Appl. Phys. B 74, S279-S282 (2002).
[CrossRef]

Levis, R. J.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Loza-Alvarez, P.

Lozovoy, V. V.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2005).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 65, 1952-1967 (2005).

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. 3: Probing microscopic chemical environments," J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastrik, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

V. V. Lozovoy and M. Dantus, "Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation," Chem. Phys. Lett. 351, 213-221 (2002).
[CrossRef]

Maginnis, K.

Malitson, I. H.

Matuschek, N.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B 70, (Suppl.) S67-S75 (2000).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
[CrossRef]

Menkir, G. M.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Meshulach, D.

Millard, A. C.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, "Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective," IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

Miller, R. J.

Monmayrant, A.

Moores, M. D.

Mori, M.

Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000).
[CrossRef]

Motzkus, M.

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, "Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping," Appl. Phys. B 70, S125-S131 (2000).
[CrossRef]

Mourou, G.

Mozume, T.

A. Neogi, H. Yoshida, T. Mozume, and O. Wada, "Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well," Opt. Commun. 159, 225-229 (1999).
[CrossRef]

Muller, M.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, "Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective," IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives," J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

Murnane, M.

Nakama, M.

Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000).
[CrossRef]

Neogi, A.

A. Neogi, H. Yoshida, T. Mozume, and O. Wada, "Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well," Opt. Commun. 159, 225-229 (1999).
[CrossRef]

Netz, R.

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

Noordam, L. D.

B. Broers, H. B. V. Vandenheuvell, and L. D. Noordam, "Large interference effects of small chirp observed in 2-photon absorption," Opt. Commun. 91, 57-61 (1992).
[CrossRef]

Oksenhendler, T.

Oron, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Quantum control of coherent anti-Stokes Raman processes," Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Pastirk, I.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2005).
[CrossRef]

I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416(2005).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. 3: Probing microscopic chemical environments," J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, M. Comstock, and M. Dantus, "Multiphoton intrapulse interference. 8. Coherent control through scattering tissue," Opt. Express 12, 4144-4149 (2004).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

Pastrik, I.

K. A. Walowicz, I. Pastrik, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Plachta, P.

Ponomarev, E. A.

Proch, D.

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, "Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping," Appl. Phys. B 70, S125-S131 (2000).
[CrossRef]

Pshenichnikov, M. S.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Second-harmonic generation frequency-resolved optical gating in the single-cycle regime," IEEE J. Quantum Electron. 35, 459-478 (1999).
[CrossRef]

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating," Opt. Lett. 23, 1474-1476 (1998).
[CrossRef]

Rabitz, H.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Ranc, S.

Reitze, D. H.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Roth, M.

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

Rousseau, J. P.

Rousseau, P.

Rudolph, W.

Russek, U.

Sauerbrey, R.

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Siegner, U.

Silberberg, Y.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Quantum control of coherent anti-Stokes Raman processes," Phys. Rev. A 65, 043408 (2002).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," J. Opt. Soc. Am. B 15, 1615-1619 (1998).
[CrossRef]

Simon, U.

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives," J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

Squier, J.

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives," J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

Squier, J. A.

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, "Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective," IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

Steinmeyer, G.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B 70, (Suppl.) S67-S75 (2000).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
[CrossRef]

Stobrawa, G.

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

Sutoh, Y.

Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000).
[CrossRef]

Sutter, D. H.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B 70, (Suppl.) S67-S75 (2000).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
[CrossRef]

Sweetser, J. N.

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Tournois, P.

Trebino, R.

Vandenheuvell, H. B.

B. Broers, H. B. V. Vandenheuvell, and L. D. Noordam, "Large interference effects of small chirp observed in 2-photon absorption," Opt. Commun. 91, 57-61 (1992).
[CrossRef]

Vdovin, G.

Villeneuve, D. M.

F. L. Legare, J. M. Fraser, D. M. Villeneuve, and P. B. Corkum, "Adaptive compression of intense 250-nm-bandwidth laser pulses," Appl. Phys. B 74, S279-S282 (2002).
[CrossRef]

Wada, O.

A. Neogi, H. Yoshida, T. Mozume, and O. Wada, "Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well," Opt. Commun. 159, 225-229 (1999).
[CrossRef]

Walmsley, I. A.

Walowicz, K. A.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. 3: Probing microscopic chemical environments," J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastrik, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

Weber, P. M.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999).
[CrossRef]

Weinacht, T. C.

J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information storage and retrieval through quantum phase," Science 287, 463-465 (2000).
[CrossRef] [PubMed]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

A. M. Weiner, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

White, W. E.

Wiersma, D. A.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Second-harmonic generation frequency-resolved optical gating in the single-cycle regime," IEEE J. Quantum Electron. 35, 459-478 (1999).
[CrossRef]

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating," Opt. Lett. 23, 1474-1476 (1998).
[CrossRef]

Wilson, K. R.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999).
[CrossRef]

Wolleschensky, R.

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives," J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

Yakovlev, V. V.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999).
[CrossRef]

Yasuno, Y.

Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000).
[CrossRef]

Yatagai, T.

Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000).
[CrossRef]

Yelin, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Quantum control of coherent anti-Stokes Raman processes," Phys. Rev. A 65, 043408 (2002).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," J. Opt. Soc. Am. B 15, 1615-1619 (1998).
[CrossRef]

Yoshida, H.

A. Neogi, H. Yoshida, T. Mozume, and O. Wada, "Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well," Opt. Commun. 159, 225-229 (1999).
[CrossRef]

Zeek, E.

Zeidler, D.

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, "Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping," Appl. Phys. B 70, S125-S131 (2000).
[CrossRef]

Appl. Phys. B

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997).
[CrossRef]

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, "Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping," Appl. Phys. B 70, S125-S131 (2000).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B 70, (Suppl.) S67-S75 (2000).
[CrossRef]

F. L. Legare, J. M. Fraser, D. M. Villeneuve, and P. B. Corkum, "Adaptive compression of intense 250-nm-bandwidth laser pulses," Appl. Phys. B 74, S279-S282 (2002).
[CrossRef]

Chem. Phys. Chem.

V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 65, 1952-1967 (2005).

Chem. Phys. Lett.

V. V. Lozovoy and M. Dantus, "Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation," Chem. Phys. Lett. 351, 213-221 (2002).
[CrossRef]

IEEE J. Quantum Electron.

A. M. Weiner, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992).
[CrossRef]

D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, "Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective," IEEE J. Quantum Electron. 35, 479-486 (1999).
[CrossRef]

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Second-harmonic generation frequency-resolved optical gating in the single-cycle regime," IEEE J. Quantum Electron. 35, 459-478 (1999).
[CrossRef]

J. Biomed. Opt.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999).
[CrossRef]

J. Chem. Phys.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003).
[CrossRef]

J. Microsc.

M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives," J. Microsc. 191, 141-150 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem. A

I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416(2005).
[CrossRef]

J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005).
[CrossRef]

K. A. Walowicz, I. Pastrik, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. 3: Probing microscopic chemical environments," J. Phys. Chem. A 108, 53-58 (2004).
[CrossRef]

Opt. Commun.

B. Broers, H. B. V. Vandenheuvell, and L. D. Noordam, "Large interference effects of small chirp observed in 2-photon absorption," Opt. Commun. 91, 57-61 (1992).
[CrossRef]

Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000).
[CrossRef]

A. Neogi, H. Yoshida, T. Mozume, and O. Wada, "Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well," Opt. Commun. 159, 225-229 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, "Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens," Opt. Lett. 29, 2282-2284 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

M. R. Armstrong, P. Plachta, E. A. Ponomarev, and R. J. D. Miller, "Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics," Opt. Lett. 26, 1152-1154 (2001).
[CrossRef]

A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control," Opt. Lett. 27, 306-308 (2002).
[CrossRef]

U. Siegner, M. Haiml, J. Kunde, and U. Keller, "Adaptive pulse compression by two-photon absorption in semiconductors," Opt. Lett. 27, 315-317 (2002).
[CrossRef]

A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, "Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector," Opt. Lett. 28, 278-280 (2003).
[CrossRef] [PubMed]

C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998).
[CrossRef]

D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998).
[CrossRef]

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating," Opt. Lett. 23, 1474-1476 (1998).
[CrossRef]

A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
[CrossRef]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999).
[CrossRef]

J. Jasapara and W. Rudolph, "Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives," Opt. Lett. 24, 777-779 (1999).
[CrossRef]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999).
[CrossRef]

C. Dorrer, B. de Beauvoir, C. Le Blanc, S. Ranc, J. P. Rousseau, P. Rousseau, and J. P. Chambaret, "Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1644-1646 (1999).
[CrossRef]

Phys. Rev. A

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Quantum control of coherent anti-Stokes Raman processes," Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2005).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Science

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information storage and retrieval through quantum phase," Science 287, 463-465 (2000).
[CrossRef] [PubMed]

Other

Ohara Corp., "Optical glass catalog data," retrieved May 2, 2005, http://www.oharacorp.com/swf/catalog.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental MIIPS setup. fs, femtosecond.

Fig. 2
Fig. 2

Experimental demonstration of the MIIPS iteration process. The left panels are SHG spectra as the δ parameter of the reference function is scanned. Each vertical line corresponds to a separate SHG spectrum obtained at a given value for δ. The black lines that separate the MIIPS traces are used to define the region for searching δ m ( ω ) . The dots within those boundaries show δ m ( ω ) . The center panels show the retrieved second derivative of the spectral phase. The right panels show the phase calculated from the retrieved second derivative.

Fig. 3
Fig. 3

Retrieved phase. The thick curve highlights the retrieved phase after five iterations, the dashed curve shows the retrieved phase from the first iteration, and the thin curve shows the spectrum of the laser pulse.

Fig. 4
Fig. 4

Reproducibility of MIIPS. In both panels, the solid curve shows the average of ten independently retrieved phases, while the error bars show ± 1 standard deviation for every fifth point. The lower panel shows the full range of collected data. The upper panel shows a closer view of the region over which MIIPS can compensate (760–880 nm).

Fig. 5
Fig. 5

Ability of MIIPS to retrieve arbitrary phase functions. (a) The result for an applied double Gaussian function. (b) The result for an applied sine function. The dotted curves show the retrieved phase, and the solid curves are the applied phase.

Fig. 6
Fig. 6

Comparison between experimental data and theoretical simulation. The solid curve in each panel shows the theoretical spectrum predicted for the application of a particular binary phase (a) and (b) or a particular sine function (c) and (d). The dotted curves correspond to the experimentally measured SHG spectrum for each case. (a) The experimental result of the application of a binary phase mask (inset) to a pulse compensated by MIIPS. (b) The result of the application of the same phase mask to an uncompensated pulse. (c) and (d) The corresponding information using a sine function (inset).

Fig. 7
Fig. 7

GVD measurement of quartz using MIIPS. (a) The retrieved second derivative of the spectral phases (from bottom to top: 0, 3.25, 4.92, 6.53, and 9.58 mm quartz windows). (b) The GVD at 800 nm as a function of thickness.

Fig. 8
Fig. 8

GVD measurement of microscope slides using MIIPS. (a) The retrieved second derivative of the spectral phases (from bottom to top: 0, 2, 4, 6, 8, and 10 mm microscope slides). Note that for clarity the odd number of slides (odd thicknesses) were omitted from this graph, but not from the calculation. (b) The GVD at 800 nm as a function of thickness.

Fig. 9
Fig. 9

Compensation of spectral phase distortions caused by a 60 x 1.45 NA objective. The error bars indicate ± 1 standard deviation. The lower panel shows the full range of data, while the upper panel shows the same data over the FWHM of the pulse, on a reduced scale.

Fig. 10
Fig. 10

MIIPS measurement through scattering biological tissue. (a) and (b) MIIPS traces without and with tissue, respectively. (c) While the overall signal-to-noise ratio is significantly decreased, similar phase information is obtained.

Fig. 11
Fig. 11

Compensation of a heavily chirped pulse. (a) The retrieved phase of an uncompensated pulse. The upper panel shows the residue of the phase after successful compensation by MIIPS. (b) The applied compensation mask, with significant wrapping.

Tables (1)

Tables Icon

Table 1 Comparison of Reproducibility of MIIPS with FROG and SPIDER: Statistical Phase Error (in rad)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S ( 2 ) ( 2 ω ) E ( ω + Ω ) E ( ω Ω ) exp { i [ φ ( ω + Ω ) + φ ( ω Ω ) ] } d Ω 2 .
φ ( ω + Ω ) + φ ( ω Ω ) = 2 φ ( ω ) + φ ( ω ) Ω 2 + + 2 ( 2 n ) ! φ 2 n ( ω ) Ω 2 n ,
ϕ ( ω ) = α γ 2 sin [ γ ω δ m n ( ω ) ] .
ϕ ( ω ) = 1 2 α γ 2 { sin [ γ ω δ m 1 ( ω ) ] + sin [ γ ω δ m 2 ( ω ) ] } .
ϕ measured = 1 2 α γ 2 [ sin ( ξ + ϵ ϕ ) + sin ( ξ + ϵ ϕ + π ) ] ( 1 1 2 ϵ ϕ 2 ) ϕ .
ϕ measured = 1 2 α γ 2 [ sin ( γ ϵ ω ξ ) + sin ( γ ϵ ω ξ + π ) ] ( 1 1 2 γ 2 ϵ ω 2 ) ϕ .
ϕ measured ϕ ( 1 ± n ϕ n τ 0 2 n n ! ) .

Metrics