Abstract

Stabilization of a laser to an optical-clock transition has been demonstrated using Ramsey’s phase-modulation technique. The technique was implemented using a 674nm laser and a component of the 5sS1224dD522 optical clock transition in a single Sr+88 ion. The lock performance observed was consistent with the short-term stability of the local oscillator. Compared with existing frequency-modulation stabilization schemes, this technique offers advantages for use in single-ion optical clocks through its possible increased resolution and the ability to conveniently compensate known systematic shifts.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Oates, E. A. Curtis, and L. Hollberg, "Improved short-term stability of optical-frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm," Opt. Lett. 25, 1603-1605 (2000).
    [CrossRef]
  2. K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
    [CrossRef]
  3. Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
    [CrossRef] [PubMed]
  4. G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmke, and F. Riehle, "Optical clock with ultracold neutral atoms," Phys. Rev. Lett. 89, 230801 (2002).
    [CrossRef] [PubMed]
  5. J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. Telle, "Absolute frequency measurement of the 435.5 nmYb+171 clock transition with a Kerr-lens mode-locked femtosecond laser," Opt. Lett. 26, 1589-1591 (2001).
    [CrossRef]
  6. H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
    [CrossRef] [PubMed]
  7. P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, J.-S. Boulanger, and S. Cundy, "Electric quadrupole shift cancellation in single-ion optical-frequency standards," Phys. Rev. Lett. 95, 033001 (2005).
    [CrossRef] [PubMed]
  8. Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
    [CrossRef]
  9. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  10. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]
  11. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
    [CrossRef] [PubMed]
  12. N. F. Ramsey and H. B. Silsbee, "Phase shifts in the molecular beam method of separated oscillating fields," Phys. Rev. 84, 506-507 (1951).
    [CrossRef]
  13. R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz ultraviolet spectroscopy of Hg+199," Phys. Rev. Lett. 85, 2462-2465 (2000).
    [CrossRef] [PubMed]
  14. J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, "Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum," Phys. Rev. Lett. 82, 3228-3231 (1999).
    [CrossRef]
  15. V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, "Optical Ramsey spectroscopy of a single trapped Sr+88 ion," Phys. Rev. A 70, 033419 (2004).
    [CrossRef]
  16. H. Dehmelt, "Proposed 10^14 Delta nu < nu laser fluorescence spectroscopy on Tl+ mono-ion oscillator II (spontaneous quantum jumps)," Bull. Am. Phys. Soc. 20, 60 (1975).
  17. G. P. Barwood, C. S. Edwards, P. Gill, H. A. Klein, and W. R. C. Rowley, "Observation of the 5s S1/22-4d D5/22 transition in a single laser-cooled trapped Sr+ ion by using an all-solid-state system of lasers," Opt. Lett. 18, 732-734 (1993).
    [CrossRef] [PubMed]
  18. D. Cho, K. Sangster, and E. A. Hinds, "Tenfold improvement of limits on T violation in thallium fluoride," Phys. Rev. Lett. 63, 2559-2562 (1989).
    [CrossRef] [PubMed]
  19. Y. Pawitan, In All Likelihood: Statistical Modelling and Inference Using Likelihood (Oxford U. Press, 2001).
  20. W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
    [CrossRef] [PubMed]
  21. E. Riis and A. G. Sinclair, "Optimum measurement strategies for trapped ion optical-frequency standards," J. Phys. B 37, 4719-4732 (2004).
    [CrossRef]

2005

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, J.-S. Boulanger, and S. Cundy, "Electric quadrupole shift cancellation in single-ion optical-frequency standards," Phys. Rev. Lett. 95, 033001 (2005).
[CrossRef] [PubMed]

2004

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
[CrossRef] [PubMed]

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, "Optical Ramsey spectroscopy of a single trapped Sr+88 ion," Phys. Rev. A 70, 033419 (2004).
[CrossRef]

E. Riis and A. G. Sinclair, "Optimum measurement strategies for trapped ion optical-frequency standards," J. Phys. B 37, 4719-4732 (2004).
[CrossRef]

2002

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmke, and F. Riehle, "Optical clock with ultracold neutral atoms," Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef] [PubMed]

2001

J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. Telle, "Absolute frequency measurement of the 435.5 nmYb+171 clock transition with a Kerr-lens mode-locked femtosecond laser," Opt. Lett. 26, 1589-1591 (2001).
[CrossRef]

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
[CrossRef]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
[CrossRef]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

2000

C. W. Oates, E. A. Curtis, and L. Hollberg, "Improved short-term stability of optical-frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm," Opt. Lett. 25, 1603-1605 (2000).
[CrossRef]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz ultraviolet spectroscopy of Hg+199," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

1999

J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, "Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum," Phys. Rev. Lett. 82, 3228-3231 (1999).
[CrossRef]

1993

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

G. P. Barwood, C. S. Edwards, P. Gill, H. A. Klein, and W. R. C. Rowley, "Observation of the 5s S1/22-4d D5/22 transition in a single laser-cooled trapped Sr+ ion by using an all-solid-state system of lasers," Opt. Lett. 18, 732-734 (1993).
[CrossRef] [PubMed]

1989

D. Cho, K. Sangster, and E. A. Hinds, "Tenfold improvement of limits on T violation in thallium fluoride," Phys. Rev. Lett. 63, 2559-2562 (1989).
[CrossRef] [PubMed]

1975

H. Dehmelt, "Proposed 10^14 Delta nu < nu laser fluorescence spectroscopy on Tl+ mono-ion oscillator II (spontaneous quantum jumps)," Bull. Am. Phys. Soc. 20, 60 (1975).

1951

N. F. Ramsey and H. B. Silsbee, "Phase shifts in the molecular beam method of separated oscillating fields," Phys. Rev. 84, 506-507 (1951).
[CrossRef]

Barwood, G. P.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
[CrossRef] [PubMed]

G. P. Barwood, C. S. Edwards, P. Gill, H. A. Klein, and W. R. C. Rowley, "Observation of the 5s S1/22-4d D5/22 transition in a single laser-cooled trapped Sr+ ion by using an all-solid-state system of lasers," Opt. Lett. 18, 732-734 (1993).
[CrossRef] [PubMed]

Beall, J. A.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz ultraviolet spectroscopy of Hg+199," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

Becker, Th.

Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
[CrossRef]

Bergquist, J. C.

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
[CrossRef]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz ultraviolet spectroscopy of Hg+199," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

Bernard, J. E.

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, J.-S. Boulanger, and S. Cundy, "Electric quadrupole shift cancellation in single-ion optical-frequency standards," Phys. Rev. Lett. 95, 033001 (2005).
[CrossRef] [PubMed]

J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, "Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum," Phys. Rev. Lett. 82, 3228-3231 (1999).
[CrossRef]

Binnewies, T.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmke, and F. Riehle, "Optical clock with ultracold neutral atoms," Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef] [PubMed]

Bollinger, J. J.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

Boulanger, J.-S.

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, J.-S. Boulanger, and S. Cundy, "Electric quadrupole shift cancellation in single-ion optical-frequency standards," Phys. Rev. Lett. 95, 033001 (2005).
[CrossRef] [PubMed]

Cho, D.

D. Cho, K. Sangster, and E. A. Hinds, "Tenfold improvement of limits on T violation in thallium fluoride," Phys. Rev. Lett. 63, 2559-2562 (1989).
[CrossRef] [PubMed]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Cundy, S.

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, J.-S. Boulanger, and S. Cundy, "Electric quadrupole shift cancellation in single-ion optical-frequency standards," Phys. Rev. Lett. 95, 033001 (2005).
[CrossRef] [PubMed]

J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, "Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum," Phys. Rev. Lett. 82, 3228-3231 (1999).
[CrossRef]

Curtis, E. A.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
[CrossRef]

C. W. Oates, E. A. Curtis, and L. Hollberg, "Improved short-term stability of optical-frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm," Opt. Lett. 25, 1603-1605 (2000).
[CrossRef]

Degenhardt, C.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmke, and F. Riehle, "Optical clock with ultracold neutral atoms," Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef] [PubMed]

Dehmelt, H.

H. Dehmelt, "Proposed 10^14 Delta nu < nu laser fluorescence spectroscopy on Tl+ mono-ion oscillator II (spontaneous quantum jumps)," Bull. Am. Phys. Soc. 20, 60 (1975).

Diddams, S. A.

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
[CrossRef]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Drullinger, R. E.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Dubé, P.

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, J.-S. Boulanger, and S. Cundy, "Electric quadrupole shift cancellation in single-ion optical-frequency standards," Phys. Rev. Lett. 95, 033001 (2005).
[CrossRef] [PubMed]

Edwards, C. S.

Fox, R. W.

Gill, P.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
[CrossRef] [PubMed]

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, "Optical Ramsey spectroscopy of a single trapped Sr+88 ion," Phys. Rev. A 70, 033419 (2004).
[CrossRef]

G. P. Barwood, C. S. Edwards, P. Gill, H. A. Klein, and W. R. C. Rowley, "Observation of the 5s S1/22-4d D5/22 transition in a single laser-cooled trapped Sr+ ion by using an all-solid-state system of lasers," Opt. Lett. 18, 732-734 (1993).
[CrossRef] [PubMed]

Gilligan, J. M.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Haverkamp, N.

Heinzen, D. J.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

Helmke, J.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmke, and F. Riehle, "Optical clock with ultracold neutral atoms," Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef] [PubMed]

Hinds, E. A.

D. Cho, K. Sangster, and E. A. Hinds, "Tenfold improvement of limits on T violation in thallium fluoride," Phys. Rev. Lett. 63, 2559-2562 (1989).
[CrossRef] [PubMed]

Hollberg, L.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
[CrossRef]

C. W. Oates, E. A. Curtis, and L. Hollberg, "Improved short-term stability of optical-frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm," Opt. Lett. 25, 1603-1605 (2000).
[CrossRef]

Holzwarth, R.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Huang, G.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
[CrossRef] [PubMed]

Itano, W. M.

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
[CrossRef]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz ultraviolet spectroscopy of Hg+199," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Klein, H. A.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
[CrossRef] [PubMed]

G. P. Barwood, C. S. Edwards, P. Gill, H. A. Klein, and W. R. C. Rowley, "Observation of the 5s S1/22-4d D5/22 transition in a single laser-cooled trapped Sr+ ion by using an all-solid-state system of lasers," Opt. Lett. 18, 732-734 (1993).
[CrossRef] [PubMed]

Knight, J. C.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Lea, S. N.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
[CrossRef] [PubMed]

Lee, W. D.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
[CrossRef]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Letchumanan, V.

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, "Optical Ramsey spectroscopy of a single trapped Sr+88 ion," Phys. Rev. A 70, 033419 (2004).
[CrossRef]

Madej, A. A.

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, J.-S. Boulanger, and S. Cundy, "Electric quadrupole shift cancellation in single-ion optical-frequency standards," Phys. Rev. Lett. 95, 033001 (2005).
[CrossRef] [PubMed]

J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, "Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum," Phys. Rev. Lett. 82, 3228-3231 (1999).
[CrossRef]

Margolis, H. S.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
[CrossRef] [PubMed]

Marmet, L.

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, J.-S. Boulanger, and S. Cundy, "Electric quadrupole shift cancellation in single-ion optical-frequency standards," Phys. Rev. Lett. 95, 033001 (2005).
[CrossRef] [PubMed]

J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, "Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum," Phys. Rev. Lett. 82, 3228-3231 (1999).
[CrossRef]

Moore, F. L.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

Nevsky, A. Yu.

Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
[CrossRef]

Oates, C. W.

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
[CrossRef]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

C. W. Oates, E. A. Curtis, and L. Hollberg, "Improved short-term stability of optical-frequency standards: approaching 1 Hz in 1 s with the Ca standard at 657 nm," Opt. Lett. 25, 1603-1605 (2000).
[CrossRef]

Pawitan, Y.

Y. Pawitan, In All Likelihood: Statistical Modelling and Inference Using Likelihood (Oxford U. Press, 2001).

Peik, E.

Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
[CrossRef]

Rafac, R. J.

Raizen, M. G.

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

Ramsey, N. F.

N. F. Ramsey and H. B. Silsbee, "Phase shifts in the molecular beam method of separated oscillating fields," Phys. Rev. 84, 506-507 (1951).
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Riehle, F.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmke, and F. Riehle, "Optical clock with ultracold neutral atoms," Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef] [PubMed]

Riis, E.

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, "Optical Ramsey spectroscopy of a single trapped Sr+88 ion," Phys. Rev. A 70, 033419 (2004).
[CrossRef]

E. Riis and A. G. Sinclair, "Optimum measurement strategies for trapped ion optical-frequency standards," J. Phys. B 37, 4719-4732 (2004).
[CrossRef]

Rowley, W. R. C.

Russell, P. St. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Sangster, K.

D. Cho, K. Sangster, and E. A. Hinds, "Tenfold improvement of limits on T violation in thallium fluoride," Phys. Rev. Lett. 63, 2559-2562 (1989).
[CrossRef] [PubMed]

Schwedes, Ch.

Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
[CrossRef]

Siemsen, K. J.

J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, "Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum," Phys. Rev. Lett. 82, 3228-3231 (1999).
[CrossRef]

Silsbee, H. B.

N. F. Ramsey and H. B. Silsbee, "Phase shifts in the molecular beam method of separated oscillating fields," Phys. Rev. 84, 506-507 (1951).
[CrossRef]

Sinclair, A. G.

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, "Optical Ramsey spectroscopy of a single trapped Sr+88 ion," Phys. Rev. A 70, 033419 (2004).
[CrossRef]

E. Riis and A. G. Sinclair, "Optimum measurement strategies for trapped ion optical-frequency standards," J. Phys. B 37, 4719-4732 (2004).
[CrossRef]

Skvortsov, M. N.

Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
[CrossRef]

Stenger, J.

Stenz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Sterr, U.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmke, and F. Riehle, "Optical clock with ultracold neutral atoms," Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef] [PubMed]

Szymaniec, K.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
[CrossRef] [PubMed]

Tamm, C.

Telle, H.

Udem, Th.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Vogel, K. R.

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, and L. Hollberg, "Direct comparison of two cold-atom-based optical-frequency standards by using a femtosecond-laser comb," Opt. Lett. 26, 102-104 (2001).
[CrossRef]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Wadsworth, W. J.

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Walther, H.

Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
[CrossRef]

Wells, J. S.

Weyers, S.

Whitford, B. G.

J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, "Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum," Phys. Rev. Lett. 82, 3228-3231 (1999).
[CrossRef]

Wilpers, G.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmke, and F. Riehle, "Optical clock with ultracold neutral atoms," Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef] [PubMed]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Wineland, D. J.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz ultraviolet spectroscopy of Hg+199," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

Young, B. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz ultraviolet spectroscopy of Hg+199," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

Zanthier, J. v.

Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
[CrossRef]

Bull. Am. Phys. Soc.

H. Dehmelt, "Proposed 10^14 Delta nu < nu laser fluorescence spectroscopy on Tl+ mono-ion oscillator II (spontaneous quantum jumps)," Bull. Am. Phys. Soc. 20, 60 (1975).

J. Phys. B

E. Riis and A. G. Sinclair, "Optimum measurement strategies for trapped ion optical-frequency standards," J. Phys. B 37, 4719-4732 (2004).
[CrossRef]

Opt. Lett.

Phys. Rev.

N. F. Ramsey and H. B. Silsbee, "Phase shifts in the molecular beam method of separated oscillating fields," Phys. Rev. 84, 506-507 (1951).
[CrossRef]

Phys. Rev. A

Th. Becker, J. v. Zanthier, A. Yu. Nevsky, Ch. Schwedes, M. N. Skvortsov, H. Walther, and E. Peik, "High-resolution spectroscopy of a single In+ ion: progress towards an optical-frequency standard," Phys. Rev. A 63, 051802 (2001).
[CrossRef]

W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, "Quantum projection noise: population fluctuations in two-level systems," Phys. Rev. A 47, 3554-3570 (1993).
[CrossRef] [PubMed]

V. Letchumanan, P. Gill, E. Riis, and A. G. Sinclair, "Optical Ramsey spectroscopy of a single trapped Sr+88 ion," Phys. Rev. A 70, 033419 (2004).
[CrossRef]

Phys. Rev. Lett.

P. Dubé, A. A. Madej, J. E. Bernard, L. Marmet, J.-S. Boulanger, and S. Cundy, "Electric quadrupole shift cancellation in single-ion optical-frequency standards," Phys. Rev. Lett. 95, 033001 (2005).
[CrossRef] [PubMed]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser," Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmke, and F. Riehle, "Optical clock with ultracold neutral atoms," Phys. Rev. Lett. 89, 230801 (2002).
[CrossRef] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Sub-dekahertz ultraviolet spectroscopy of Hg+199," Phys. Rev. Lett. 85, 2462-2465 (2000).
[CrossRef] [PubMed]

J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, and S. Cundy, "Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum," Phys. Rev. Lett. 82, 3228-3231 (1999).
[CrossRef]

R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

D. Cho, K. Sangster, and E. A. Hinds, "Tenfold improvement of limits on T violation in thallium fluoride," Phys. Rev. Lett. 63, 2559-2562 (1989).
[CrossRef] [PubMed]

Science

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, "An optical clock based on a single trapped Hg+199 ion," Science 293, 825-828 (2001).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stenz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical-frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, "Hertz-level measurement of the optical clock frequency in a single Sr+88 ion," Science 306, 1355-1358 (2004).
[CrossRef] [PubMed]

Other

Y. Pawitan, In All Likelihood: Statistical Modelling and Inference Using Likelihood (Oxford U. Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Relevant energy levels of Sr + 88 . The ion is Doppler cooled on the 422 nm 5 s S 1 2 2 - 5 p P 1 2 2 transition, and a 1092 nm laser prevents optical pumping to the 4 d D 3 2 2 state. The narrow 5 s S 1 2 2 - 4 d D 5 2 2 transition is the optical clock reference at 674 nm . When shelved in the 4 d D 5 2 2 state, the ion is returned to the cooling cycle by driving the 4 d D 5 2 2 - 5 p P 3 2 2 transition at 1033 nm .

Fig. 2
Fig. 2

Phase-modulated optical Ramsey lineshape of the 5 s S 1 2 2 ( m j = 1 2 ) - 4 d D 5 2 2 ( m j = 1 2 ) transition, recorded for τ = 15 μ s and T = 40 μ s . The 674 nm laser is stabilized to the central zero crossing of this antisymmetric discriminant signal.

Fig. 3
Fig. 3

Evolution of (a) the Ramsey discriminant signal, and (b) the active laser-tuning element (i.e., rf synthesizer), after the servo system is engaged. Initially the laser is detuned 7.5 kHz below the line center, near the adjacent zero crossing of opposite slope. The mean data acquisition period for each data point is 14.4   s ; feedback is applied to the rf synthesizer after each acquisition period. From 200   to   1400 s , the rms discriminant signal is 0.08, representing an rms frequency deviation of 250 Hz .

Metrics