Abstract

The polarization characteristics of electro-optical (EO) switches using fiber Sagnac interferometer (FSI) structures are theoretically investigated. Analytical solutions of output fields are presented when the twists and birefringence in a Sagnac loop are considered. Numerical calculations show that the twists of fiber, the orientation of the inserted phase retarder, and the splitting ratio of the coupler will influence both the output intensity and the output polarization properties of the proposed switch. A polarization-independent EO switch based on a Sagnac interferometer and a PLZT bar was experimentally implemented, which showed good coincidence with the analytical results. The experiment showed a switch with 22dB extinction ratio and less than 31.1ns switching time.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fang, H. Ji, L. J. Pelz, and K. R. Demarest, "A dc to multigigabit/s polarization-independent modulator based on a Sagnac interferometer," J. Lightwave Technol. 15, 2166-2171 (1997).
    [CrossRef]
  2. R. H. Qu, H. Zhao, Z. J. Fang, E. Martin, and J. P. Meunier, "Configurable wavelength-selective switch based on fiber grating and fiber loop mirror," IEEE Photonics Technol. Lett. 12, 1343-1345 (2000).
    [CrossRef]
  3. M. Matsuura and N. Kishi, "All-optical wavelength and pulse-width conversions with a Sagnac interferometer semiconductor based switch," Opt. Lett. 28, 132-134 (2003).
    [CrossRef] [PubMed]
  4. B. C. Wang, V. Baby, W. Tong, R. Runser, M. Friedman, I. Glesk, and P. Prucnal, "A novel fast optical switch based on two cascaded terahertz optical asymmetric demultiplexers," Opt. Express 10, 15-23 (2002).
    [PubMed]
  5. D. B. Mortimore, "Fiber loop reflectors," J. Lightwave Technol. 6, 1217-1224 (1988).
    [CrossRef]
  6. X. Fang and R. O. Claus, "Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer," Opt. Lett. 20, 2146-2148 (1995).
    [CrossRef] [PubMed]
  7. K. L. Lee, M. P. Fok, S. M. Wan, and C. Shu, "Optically controlled Sagnac loop comb filter," Opt. Express 12, 6335-6340 (2004).
    [CrossRef] [PubMed]
  8. A. Yu and A. S. Siddiqui, "Optical modulators using fibreoptic Sagnac interferometers," IEE Proc.: Optoelectron. 141, 1-7 (1994).
    [CrossRef]
  9. E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Polarization independent nonlinear fiber Sagnac intefermometer," Opt. Commun. 183, 389-393 (2000).
    [CrossRef]
  10. D. Goldring, Z. Zalevsky, E. Goldenberg, A. Shemer, and D. Mendlovic, "Optical characteristics of the compound PLZT," Appl. Opt. 42, 6536-6543 (2003).
    [CrossRef] [PubMed]
  11. R. Thapliya, Y. Okano, and S. Nakamura, "Electrooptic characteristics of thin-film PLZT waveguide using ridge-type Mach-Zehnder modulator," J. Lightwave Technol. 21, 1820-1827 (2003).
    [CrossRef]

2004 (1)

2003 (3)

2002 (1)

2000 (2)

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Polarization independent nonlinear fiber Sagnac intefermometer," Opt. Commun. 183, 389-393 (2000).
[CrossRef]

R. H. Qu, H. Zhao, Z. J. Fang, E. Martin, and J. P. Meunier, "Configurable wavelength-selective switch based on fiber grating and fiber loop mirror," IEEE Photonics Technol. Lett. 12, 1343-1345 (2000).
[CrossRef]

1997 (1)

X. Fang, H. Ji, L. J. Pelz, and K. R. Demarest, "A dc to multigigabit/s polarization-independent modulator based on a Sagnac interferometer," J. Lightwave Technol. 15, 2166-2171 (1997).
[CrossRef]

1995 (1)

1994 (1)

A. Yu and A. S. Siddiqui, "Optical modulators using fibreoptic Sagnac interferometers," IEE Proc.: Optoelectron. 141, 1-7 (1994).
[CrossRef]

1988 (1)

D. B. Mortimore, "Fiber loop reflectors," J. Lightwave Technol. 6, 1217-1224 (1988).
[CrossRef]

Baby, V.

Claus, R. O.

Demarest, K. R.

X. Fang, H. Ji, L. J. Pelz, and K. R. Demarest, "A dc to multigigabit/s polarization-independent modulator based on a Sagnac interferometer," J. Lightwave Technol. 15, 2166-2171 (1997).
[CrossRef]

Fang, X.

X. Fang, H. Ji, L. J. Pelz, and K. R. Demarest, "A dc to multigigabit/s polarization-independent modulator based on a Sagnac interferometer," J. Lightwave Technol. 15, 2166-2171 (1997).
[CrossRef]

X. Fang and R. O. Claus, "Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer," Opt. Lett. 20, 2146-2148 (1995).
[CrossRef] [PubMed]

Fang, Z. J.

R. H. Qu, H. Zhao, Z. J. Fang, E. Martin, and J. P. Meunier, "Configurable wavelength-selective switch based on fiber grating and fiber loop mirror," IEEE Photonics Technol. Lett. 12, 1343-1345 (2000).
[CrossRef]

Fok, M. P.

Friedman, M.

Glesk, I.

Goldenberg, E.

Goldring, D.

Haus, J. W.

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Polarization independent nonlinear fiber Sagnac intefermometer," Opt. Commun. 183, 389-393 (2000).
[CrossRef]

Ibarra-Escamilla, B.

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Polarization independent nonlinear fiber Sagnac intefermometer," Opt. Commun. 183, 389-393 (2000).
[CrossRef]

Ji, H.

X. Fang, H. Ji, L. J. Pelz, and K. R. Demarest, "A dc to multigigabit/s polarization-independent modulator based on a Sagnac interferometer," J. Lightwave Technol. 15, 2166-2171 (1997).
[CrossRef]

Kishi, N.

Korneev, N.

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Polarization independent nonlinear fiber Sagnac intefermometer," Opt. Commun. 183, 389-393 (2000).
[CrossRef]

Kuzin, E. A.

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Polarization independent nonlinear fiber Sagnac intefermometer," Opt. Commun. 183, 389-393 (2000).
[CrossRef]

Lee, K. L.

Martin, E.

R. H. Qu, H. Zhao, Z. J. Fang, E. Martin, and J. P. Meunier, "Configurable wavelength-selective switch based on fiber grating and fiber loop mirror," IEEE Photonics Technol. Lett. 12, 1343-1345 (2000).
[CrossRef]

Matsuura, M.

Mendlovic, D.

Meunier, J. P.

R. H. Qu, H. Zhao, Z. J. Fang, E. Martin, and J. P. Meunier, "Configurable wavelength-selective switch based on fiber grating and fiber loop mirror," IEEE Photonics Technol. Lett. 12, 1343-1345 (2000).
[CrossRef]

Mortimore, D. B.

D. B. Mortimore, "Fiber loop reflectors," J. Lightwave Technol. 6, 1217-1224 (1988).
[CrossRef]

Nakamura, S.

Okano, Y.

Pelz, L. J.

X. Fang, H. Ji, L. J. Pelz, and K. R. Demarest, "A dc to multigigabit/s polarization-independent modulator based on a Sagnac interferometer," J. Lightwave Technol. 15, 2166-2171 (1997).
[CrossRef]

Prucnal, P.

Qu, R. H.

R. H. Qu, H. Zhao, Z. J. Fang, E. Martin, and J. P. Meunier, "Configurable wavelength-selective switch based on fiber grating and fiber loop mirror," IEEE Photonics Technol. Lett. 12, 1343-1345 (2000).
[CrossRef]

Runser, R.

Shemer, A.

Shu, C.

Siddiqui, A. S.

A. Yu and A. S. Siddiqui, "Optical modulators using fibreoptic Sagnac interferometers," IEE Proc.: Optoelectron. 141, 1-7 (1994).
[CrossRef]

Thapliya, R.

Tong, W.

Wan, S. M.

Wang, B. C.

Yu, A.

A. Yu and A. S. Siddiqui, "Optical modulators using fibreoptic Sagnac interferometers," IEE Proc.: Optoelectron. 141, 1-7 (1994).
[CrossRef]

Zalevsky, Z.

Zhao, H.

R. H. Qu, H. Zhao, Z. J. Fang, E. Martin, and J. P. Meunier, "Configurable wavelength-selective switch based on fiber grating and fiber loop mirror," IEEE Photonics Technol. Lett. 12, 1343-1345 (2000).
[CrossRef]

Appl. Opt. (1)

IEE Proc.: Optoelectron. (1)

A. Yu and A. S. Siddiqui, "Optical modulators using fibreoptic Sagnac interferometers," IEE Proc.: Optoelectron. 141, 1-7 (1994).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

R. H. Qu, H. Zhao, Z. J. Fang, E. Martin, and J. P. Meunier, "Configurable wavelength-selective switch based on fiber grating and fiber loop mirror," IEEE Photonics Technol. Lett. 12, 1343-1345 (2000).
[CrossRef]

J. Lightwave Technol. (3)

D. B. Mortimore, "Fiber loop reflectors," J. Lightwave Technol. 6, 1217-1224 (1988).
[CrossRef]

X. Fang, H. Ji, L. J. Pelz, and K. R. Demarest, "A dc to multigigabit/s polarization-independent modulator based on a Sagnac interferometer," J. Lightwave Technol. 15, 2166-2171 (1997).
[CrossRef]

R. Thapliya, Y. Okano, and S. Nakamura, "Electrooptic characteristics of thin-film PLZT waveguide using ridge-type Mach-Zehnder modulator," J. Lightwave Technol. 21, 1820-1827 (2003).
[CrossRef]

Opt. Commun. (1)

E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Polarization independent nonlinear fiber Sagnac intefermometer," Opt. Commun. 183, 389-393 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fiber Sagnac interferometer switch.

Fig. 2
Fig. 2

(a) Normalized output power of transmission and reflection evolutions with δ; (b) output polarization properties of FSI independent of δ (with K = 0.5 , θ = π 4 and ϕ = 0 ).

Fig. 3
Fig. 3

(Color online) (a) Switch curves with deviation of θ; (b) evolution of polarization of FSI with δ when θ = ( π 4 ) ( π 40 ) , θ = ( π 4 ) ( π 20 ) , and θ = ( π 4 ) ( π 10 ) , respectively.

Fig. 4
Fig. 4

(Color online) (a) Switch curves with deviation of ϕ ; (b) evolution of polarization of FSI with δ when ϕ = π 40 , ϕ = π 20 , and ϕ = π 10 , respectively.

Fig. 5
Fig. 5

(Color online) (a) Switch curves with deviation of K; (b) evolution of polarization of FSI with δ when K = 0.48 , 0.46, and 0.44, respectively.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

(Color online) Output of the switch with a variation of the input-polarization orientation.

Fig. 8
Fig. 8

(Color online)Waveform of the switched driver signal and output.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

P CW = { cos 2 θ + exp ( i δ ) sin 2 θ sin θ cos θ [ 1 exp ( i δ ) ] sin θ cos θ [ 1 exp ( i δ ) ] exp ( i δ ) cos 2 θ + sin 2 θ } ,
P CCW = { cos 2 θ + exp ( i δ ) sin 2 θ sin θ cos θ [ 1 exp ( i δ ) ] sin θ cos θ ( 1 e i δ ) exp ( i δ ) cos 2 θ + sin 2 θ } ,
Φ 1 = ( cos ϕ 1 sin ϕ 1 sin ϕ 1 cos ϕ 1 ) ,
Φ 2 = ( cos ϕ 2 sin ϕ 2 sin ϕ 2 cos ϕ 2 ) .
T CW = Φ 2 P CW Φ 1 ,
T CCW = Φ 1 P CCW Φ 2 .
E ̂ 1 = i K ( 1 K ) [ T CW + T CCW ] E ̂ in = ( A 1 E x + B 1 E y C 1 E x + D 1 E y ) ,
E ̂ 2 = [ ( 1 K ) T CW K T CCW ] E ̂ in = ( A 2 E x + B 2 E y C 2 E x + D 2 E y ) ,
A 1 = i K ( 1 K ) { cos ϕ [ 1 + exp ( i δ ) ] + cos ( ϕ + 2 θ ) [ 1 exp ( i δ ) ] } ,
B 1 = i K ( 1 K ) sin ϕ cos 2 θ [ 1 + exp ( i δ ) ] ,
C 1 = i K ( 1 K ) sin ϕ cos 2 θ [ 1 + exp ( i δ ) ] ,
D 1 = i K ( 1 K ) { cos ϕ [ 1 + exp ( i δ ) ] cos ( ϕ + 2 θ ) [ 1 exp ( i δ ) ] } ,
A 2 = ( 1 2 K ) 2 { cos ϕ [ 1 + exp ( i δ ) ] + cos ( ϕ + 2 θ ) [ 1 exp ( i δ ) ] } ,
B 2 = 1 2 sin ( ϕ + 2 θ ) [ 1 exp ( i δ ) ] 1 2 K 2 sin ϕ [ 1 + exp ( i δ ) ] ,
C 2 = 1 2 K 2 sin ϕ [ 1 exp ( i δ ) ] + 1 2 sin ( ϕ + 2 θ ) [ 1 exp ( i δ ) ] ,
D 2 = 1 2 K 2 { cos ϕ [ 1 + exp ( i δ ) ] cos ( ϕ + 2 θ ) [ 1 exp ( i δ ) ] } ,
A 1 = i 2 { cos ϕ [ 1 + exp ( i δ ) ] + cos ( ϕ + 2 θ ) [ 1 exp ( i δ ) ] } ,
B 1 = C 1 = i 4 sin ϕ cos 2 θ [ 1 + exp ( i δ ) ] ,
D 1 = i 2 { cos ϕ [ 1 + exp ( i δ ) ] cos ( ϕ + 2 θ ) [ 1 exp ( i δ ) ] } ,
A 2 = D 2 = 0 ,
B 2 = C 2 = 1 2 sin ( ϕ + 2 θ ) [ 1 exp ( i δ ) ] .
E ̂ 1 = [ E x cos ϕ E y sin ϕ E x sin ϕ + E y cos ϕ ] , E ¯ 2 = 0 .

Metrics