Abstract

We demonstrate an integrated evanescent-field multimode Mach–Zehnder interferometric chemical–biological sensor, fabricated on silicon, with sensitivity of parts per 109 achieved by modal pattern tracking and analysis. This sensor is fully compatible with the fabrication constraints of the silicon–complementary-metal-oxide-semiconductor (Si-CMOS) process. Furthermore, using the separately measured ellipsometric response together with the mass uptake of agent by the polymer sensing layer, we validate sensor performance via simulation and measure an absolute index sensitivity of 2.5×106. We then extend this to a fully integrated chemical–biological sensor by considering the fundamental noise performance of CMOS detectors. We find that relatively short, <5000μm long, interferometric sensing elements, with modal pattern analysis, allow fully integrated optical sensors on Si-CMOS (assuming a 2.8μm pixel pitch) with an index sensitivity of 9.2×107 and a corresponding concentration sensitivity of 170 parts per 109 for methanol in N2.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Challener, J. Edwards, R. McGowan, J. Skorjanec, and Z. Yang, "A multilayer grating-based evanescent wave sensing technique," Sens. Actuators B 71, 42-46 (2000).
    [CrossRef]
  2. J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
    [CrossRef]
  3. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluourescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001).
    [CrossRef]
  4. E. Krioukov, J. Greve, and C. Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B 90, 58-67 (2003).
    [CrossRef]
  5. N. F. Hartman, "Integrated optic interferometric sensor," U. S. patent 5623561 (April 22, 1997).
  6. R. Horvath, H. Pederson, N. Skivesen, D. Selmeczi, and N. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett. 86, 071101 (2005).
    [CrossRef]
  7. D. Kim, M. Thomas, M. Brooke, and N. Jokerst, "Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input," in Semiconductor Photodetectors, K. Linden and E. Dereniak, eds., Proc. SPIE , 5353, 20-28 (2004).
    [CrossRef]
  8. H. Kuo, S. Gho, J. Hall, and N. Jokerst, "Heterogeneous integration of InP/InGaAsP MQW thin film edge emitting lasers and polymer waveguides," in 2004 Proceedings, 54th Electronic Components and Technology Conference, Part 2 (IEEE, 2004), Vol. 2, pp. 1537-1541.
  9. J. Lillie, K. Dennis, C. Henderson, and S. Ralph, of Georgia Institute of Technology, 777 Atlantic Drive N.W., Atlanta, Ga. 30332-0250, are preparing a manuscript to be called "Polymers as 'sensing layers' for evanescent wave sensors."
  10. C. R. Pollock, Fundamentals of Optoelectronics, 1st ed. (Irwin, 1995).
  11. J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984).
    [CrossRef]
  12. A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).
  13. M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
    [PubMed]
  14. MOSIS website, "Description of AMIS processes," http://www.mosis.org/products/fab/vendors/amis/ (2005).
  15. B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001).
    [CrossRef]
  16. D. Yevick, "A guide to electric field propagation techniques for guided wave optics," Opt. Quantum Electron. 26, 185-197 (1994).
    [CrossRef]
  17. A. Drozdov, "A model for mechanically induced densification of glassy polymers," J. Appl. Mech. 66, 702-708 (1999).
    [CrossRef]
  18. D. Brennan, "Linear diversity combining techniques," Proc. IEEE 91, 331-356 (2003).
    [CrossRef]
  19. B. Schneider, J. Edwards, and N. Hartman, "Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens," Clin. Chem. 43, 1757-1763 (1997).
    [PubMed]
  20. B. Luff, J. Wilkinson, J. Piehler, U. Hollenach, J. Ingenhoff, and N. Fabricius, "Integrated optical Mach-Zehnder biosensor," J. Lightwave Technol. 16, 583-591 (1998).
    [CrossRef]
  21. A. Brandenburg, R. Krauter, C. Kunzel, M. Stefan, and H. Schulte, "Interferometric sensor for detection of surface-bound bioreactions," Appl. Opt. 39, 6396-6405 (2000).
    [CrossRef]
  22. K. Lau and A. Yariv, "Ultra-high speed semiconductor lasers," IEEE J. Quantum Electron. 21, 121-138 (1985).
    [CrossRef]
  23. P. Magnan, "Detection of visible photons in CCD and CMOS: a comparative view," Nucl. Instrum. Methods Phys. Res. A 504, 199-212 (2003).
    [CrossRef]
  24. Hamamatsu, "CMOS linear image sensor s9226," Technical Application Note KMPD1073E04 (2004).
  25. Micron Technology, Inc., "2-megapixel low-power, CMOS image sensor," http://www.micron.com/products/imaging/products/MT9D011.html (2005).
  26. K. Dennis, "Separation of mass uptake using two polar polymers for selective chemical detection," M.S. thesis (Georgia Institute of Technology, 2005).

2005 (1)

R. Horvath, H. Pederson, N. Skivesen, D. Selmeczi, and N. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett. 86, 071101 (2005).
[CrossRef]

2004 (1)

D. Kim, M. Thomas, M. Brooke, and N. Jokerst, "Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input," in Semiconductor Photodetectors, K. Linden and E. Dereniak, eds., Proc. SPIE , 5353, 20-28 (2004).
[CrossRef]

2003 (3)

E. Krioukov, J. Greve, and C. Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B 90, 58-67 (2003).
[CrossRef]

D. Brennan, "Linear diversity combining techniques," Proc. IEEE 91, 331-356 (2003).
[CrossRef]

P. Magnan, "Detection of visible photons in CCD and CMOS: a comparative view," Nucl. Instrum. Methods Phys. Res. A 504, 199-212 (2003).
[CrossRef]

2001 (3)

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluourescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001).
[CrossRef]

B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001).
[CrossRef]

2000 (2)

W. Challener, J. Edwards, R. McGowan, J. Skorjanec, and Z. Yang, "A multilayer grating-based evanescent wave sensing technique," Sens. Actuators B 71, 42-46 (2000).
[CrossRef]

A. Brandenburg, R. Krauter, C. Kunzel, M. Stefan, and H. Schulte, "Interferometric sensor for detection of surface-bound bioreactions," Appl. Opt. 39, 6396-6405 (2000).
[CrossRef]

1999 (1)

A. Drozdov, "A model for mechanically induced densification of glassy polymers," J. Appl. Mech. 66, 702-708 (1999).
[CrossRef]

1998 (1)

1997 (1)

B. Schneider, J. Edwards, and N. Hartman, "Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens," Clin. Chem. 43, 1757-1763 (1997).
[PubMed]

1994 (1)

D. Yevick, "A guide to electric field propagation techniques for guided wave optics," Opt. Quantum Electron. 26, 185-197 (1994).
[CrossRef]

1985 (1)

K. Lau and A. Yariv, "Ultra-high speed semiconductor lasers," IEEE J. Quantum Electron. 21, 121-138 (1985).
[CrossRef]

1984 (1)

Blair, S.

Brandenburg, A.

Brennan, D.

D. Brennan, "Linear diversity combining techniques," Proc. IEEE 91, 331-356 (2003).
[CrossRef]

Brooke, M.

D. Kim, M. Thomas, M. Brooke, and N. Jokerst, "Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input," in Semiconductor Photodetectors, K. Linden and E. Dereniak, eds., Proc. SPIE , 5353, 20-28 (2004).
[CrossRef]

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

Brynda, E.

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Challener, W.

W. Challener, J. Edwards, R. McGowan, J. Skorjanec, and Z. Yang, "A multilayer grating-based evanescent wave sensing technique," Sens. Actuators B 71, 42-46 (2000).
[CrossRef]

Chambers, A.

A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).

Chen, Y.

Chilwell, J.

Comeau, B.

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

Dennis, K.

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

K. Dennis, "Separation of mass uptake using two polar polymers for selective chemical detection," M.S. thesis (Georgia Institute of Technology, 2005).

J. Lillie, K. Dennis, C. Henderson, and S. Ralph, of Georgia Institute of Technology, 777 Atlantic Drive N.W., Atlanta, Ga. 30332-0250, are preparing a manuscript to be called "Polymers as 'sensing layers' for evanescent wave sensors."

Dostalek, J.

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Drozdov, A.

A. Drozdov, "A model for mechanically induced densification of glassy polymers," J. Appl. Mech. 66, 702-708 (1999).
[CrossRef]

Edwards, J.

W. Challener, J. Edwards, R. McGowan, J. Skorjanec, and Z. Yang, "A multilayer grating-based evanescent wave sensing technique," Sens. Actuators B 71, 42-46 (2000).
[CrossRef]

B. Schneider, J. Edwards, and N. Hartman, "Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens," Clin. Chem. 43, 1757-1763 (1997).
[PubMed]

Fabricius, N.

Gho, S.

H. Kuo, S. Gho, J. Hall, and N. Jokerst, "Heterogeneous integration of InP/InGaAsP MQW thin film edge emitting lasers and polymer waveguides," in 2004 Proceedings, 54th Electronic Components and Technology Conference, Part 2 (IEEE, 2004), Vol. 2, pp. 1537-1541.

Greve, J.

E. Krioukov, J. Greve, and C. Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B 90, 58-67 (2003).
[CrossRef]

Gunn, R.

A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).

Hale, J.

B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001).
[CrossRef]

Hall, J.

H. Kuo, S. Gho, J. Hall, and N. Jokerst, "Heterogeneous integration of InP/InGaAsP MQW thin film edge emitting lasers and polymer waveguides," in 2004 Proceedings, 54th Electronic Components and Technology Conference, Part 2 (IEEE, 2004), Vol. 2, pp. 1537-1541.

Hamamatsu,

Hamamatsu, "CMOS linear image sensor s9226," Technical Application Note KMPD1073E04 (2004).

Hartman, N.

B. Schneider, J. Edwards, and N. Hartman, "Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens," Clin. Chem. 43, 1757-1763 (1997).
[PubMed]

Hartman, N. F.

N. F. Hartman, "Integrated optic interferometric sensor," U. S. patent 5623561 (April 22, 1997).

Henderson, C.

J. Lillie, K. Dennis, C. Henderson, and S. Ralph, of Georgia Institute of Technology, 777 Atlantic Drive N.W., Atlanta, Ga. 30332-0250, are preparing a manuscript to be called "Polymers as 'sensing layers' for evanescent wave sensors."

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

Herzinger, C.

B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001).
[CrossRef]

Hinds, E.

A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).

Hodgkinson, I.

Hollenach, U.

Homola, J.

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Horvath, R.

R. Horvath, H. Pederson, N. Skivesen, D. Selmeczi, and N. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett. 86, 071101 (2005).
[CrossRef]

Ianno, N.

B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001).
[CrossRef]

Ingenhoff, J.

Johs, B.

B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001).
[CrossRef]

Jokerst, N.

D. Kim, M. Thomas, M. Brooke, and N. Jokerst, "Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input," in Semiconductor Photodetectors, K. Linden and E. Dereniak, eds., Proc. SPIE , 5353, 20-28 (2004).
[CrossRef]

H. Kuo, S. Gho, J. Hall, and N. Jokerst, "Heterogeneous integration of InP/InGaAsP MQW thin film edge emitting lasers and polymer waveguides," in 2004 Proceedings, 54th Electronic Components and Technology Conference, Part 2 (IEEE, 2004), Vol. 2, pp. 1537-1541.

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

Kim, D.

D. Kim, M. Thomas, M. Brooke, and N. Jokerst, "Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input," in Semiconductor Photodetectors, K. Linden and E. Dereniak, eds., Proc. SPIE , 5353, 20-28 (2004).
[CrossRef]

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

Krauter, R.

Krioukov, E.

E. Krioukov, J. Greve, and C. Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B 90, 58-67 (2003).
[CrossRef]

Kunzel, C.

Kuo, H.

H. Kuo, S. Gho, J. Hall, and N. Jokerst, "Heterogeneous integration of InP/InGaAsP MQW thin film edge emitting lasers and polymer waveguides," in 2004 Proceedings, 54th Electronic Components and Technology Conference, Part 2 (IEEE, 2004), Vol. 2, pp. 1537-1541.

Larsen, N.

R. Horvath, H. Pederson, N. Skivesen, D. Selmeczi, and N. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett. 86, 071101 (2005).
[CrossRef]

Lau, K.

K. Lau and A. Yariv, "Ultra-high speed semiconductor lasers," IEEE J. Quantum Electron. 21, 121-138 (1985).
[CrossRef]

Lillie, J.

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

J. Lillie, K. Dennis, C. Henderson, and S. Ralph, of Georgia Institute of Technology, 777 Atlantic Drive N.W., Atlanta, Ga. 30332-0250, are preparing a manuscript to be called "Polymers as 'sensing layers' for evanescent wave sensors."

Luff, B.

Magnan, P.

P. Magnan, "Detection of visible photons in CCD and CMOS: a comparative view," Nucl. Instrum. Methods Phys. Res. A 504, 199-212 (2003).
[CrossRef]

McGowan, R.

W. Challener, J. Edwards, R. McGowan, J. Skorjanec, and Z. Yang, "A multilayer grating-based evanescent wave sensing technique," Sens. Actuators B 71, 42-46 (2000).
[CrossRef]

Nekvindova, P.

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Otto, C.

E. Krioukov, J. Greve, and C. Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B 90, 58-67 (2003).
[CrossRef]

Pederson, H.

R. Horvath, H. Pederson, N. Skivesen, D. Selmeczi, and N. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett. 86, 071101 (2005).
[CrossRef]

Piehler, J.

Pink, J.

A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).

Pollock, C. R.

C. R. Pollock, Fundamentals of Optoelectronics, 1st ed. (Irwin, 1995).

Ralph, S.

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

J. Lillie, K. Dennis, C. Henderson, and S. Ralph, of Georgia Institute of Technology, 777 Atlantic Drive N.W., Atlanta, Ga. 30332-0250, are preparing a manuscript to be called "Polymers as 'sensing layers' for evanescent wave sensors."

Robb, K.

A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).

Schneider, B.

B. Schneider, J. Edwards, and N. Hartman, "Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens," Clin. Chem. 43, 1757-1763 (1997).
[PubMed]

Schrofel, J.

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Schulte, H.

Selmeczi, D.

R. Horvath, H. Pederson, N. Skivesen, D. Selmeczi, and N. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett. 86, 071101 (2005).
[CrossRef]

Skalsky, M.

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Skivesen, N.

R. Horvath, H. Pederson, N. Skivesen, D. Selmeczi, and N. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett. 86, 071101 (2005).
[CrossRef]

Skorjanec, J.

W. Challener, J. Edwards, R. McGowan, J. Skorjanec, and Z. Yang, "A multilayer grating-based evanescent wave sensing technique," Sens. Actuators B 71, 42-46 (2000).
[CrossRef]

Skvor, J.

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Spirkova, J.

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Stefan, M.

Stephens, D.

A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).

Styroky, J.

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Thomas, M.

D. Kim, M. Thomas, M. Brooke, and N. Jokerst, "Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input," in Semiconductor Photodetectors, K. Linden and E. Dereniak, eds., Proc. SPIE , 5353, 20-28 (2004).
[CrossRef]

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

Thomas, T.

A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).

Tiwald, T.

B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001).
[CrossRef]

Wilkinson, J.

Woollam, J.

B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001).
[CrossRef]

Yang, Z.

W. Challener, J. Edwards, R. McGowan, J. Skorjanec, and Z. Yang, "A multilayer grating-based evanescent wave sensing technique," Sens. Actuators B 71, 42-46 (2000).
[CrossRef]

Yariv, A.

K. Lau and A. Yariv, "Ultra-high speed semiconductor lasers," IEEE J. Quantum Electron. 21, 121-138 (1985).
[CrossRef]

Yevick, D.

D. Yevick, "A guide to electric field propagation techniques for guided wave optics," Opt. Quantum Electron. 26, 185-197 (1994).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. Horvath, H. Pederson, N. Skivesen, D. Selmeczi, and N. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett. 86, 071101 (2005).
[CrossRef]

Clin. Chem. (1)

B. Schneider, J. Edwards, and N. Hartman, "Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens," Clin. Chem. 43, 1757-1763 (1997).
[PubMed]

IEEE J. Quantum Electron. (1)

K. Lau and A. Yariv, "Ultra-high speed semiconductor lasers," IEEE J. Quantum Electron. 21, 121-138 (1985).
[CrossRef]

J. Appl. Mech. (1)

A. Drozdov, "A model for mechanically induced densification of glassy polymers," J. Appl. Mech. 66, 702-708 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nucl. Instrum. Methods Phys. Res. A (1)

P. Magnan, "Detection of visible photons in CCD and CMOS: a comparative view," Nucl. Instrum. Methods Phys. Res. A 504, 199-212 (2003).
[CrossRef]

Opt. Quantum Electron. (1)

D. Yevick, "A guide to electric field propagation techniques for guided wave optics," Opt. Quantum Electron. 26, 185-197 (1994).
[CrossRef]

Proc. IEEE (1)

D. Brennan, "Linear diversity combining techniques," Proc. IEEE 91, 331-356 (2003).
[CrossRef]

Proc. SPIE (2)

B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001).
[CrossRef]

D. Kim, M. Thomas, M. Brooke, and N. Jokerst, "Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input," in Semiconductor Photodetectors, K. Linden and E. Dereniak, eds., Proc. SPIE , 5353, 20-28 (2004).
[CrossRef]

Sens. Actuators B (3)

E. Krioukov, J. Greve, and C. Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B 90, 58-67 (2003).
[CrossRef]

W. Challener, J. Edwards, R. McGowan, J. Skorjanec, and Z. Yang, "A multilayer grating-based evanescent wave sensing technique," Sens. Actuators B 71, 42-46 (2000).
[CrossRef]

J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001).
[CrossRef]

Other (10)

N. F. Hartman, "Integrated optic interferometric sensor," U. S. patent 5623561 (April 22, 1997).

H. Kuo, S. Gho, J. Hall, and N. Jokerst, "Heterogeneous integration of InP/InGaAsP MQW thin film edge emitting lasers and polymer waveguides," in 2004 Proceedings, 54th Electronic Components and Technology Conference, Part 2 (IEEE, 2004), Vol. 2, pp. 1537-1541.

J. Lillie, K. Dennis, C. Henderson, and S. Ralph, of Georgia Institute of Technology, 777 Atlantic Drive N.W., Atlanta, Ga. 30332-0250, are preparing a manuscript to be called "Polymers as 'sensing layers' for evanescent wave sensors."

C. R. Pollock, Fundamentals of Optoelectronics, 1st ed. (Irwin, 1995).

A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).

M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004).
[PubMed]

MOSIS website, "Description of AMIS processes," http://www.mosis.org/products/fab/vendors/amis/ (2005).

Hamamatsu, "CMOS linear image sensor s9226," Technical Application Note KMPD1073E04 (2004).

Micron Technology, Inc., "2-megapixel low-power, CMOS image sensor," http://www.micron.com/products/imaging/products/MT9D011.html (2005).

K. Dennis, "Separation of mass uptake using two polar polymers for selective chemical detection," M.S. thesis (Georgia Institute of Technology, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Cross section of the interferometric sensor. From bottom to top, the waveguide structure consists of a 1 2 μ m thick SiO 2 layer and a 0.25 μ m thick SiO x N y guiding layer ( n 840 nm 1.9223 ) . On the (left) sensing arm, there is a 0.95 μ m thick layer of the polynorbornene polymer, HFAPNB ( n 840 nm 1.4301 ) , above the guiding layer. On the reference arm, a 1 μ m thick SiO 2 layer separates the guiding layer from the HFAPNB layer. (b) Surface relief of the interferometric sensor.

Fig. 2
Fig. 2

Sensitivity of the single, TM-like vertical mode effective index, Δ n eff , to SL index changes, δ n SL , and SL thickness changes, δ h SL , for a 0.9 μ m thick sense layer. The index sensitivity of a higher-index SL, compared with the lower cladding ( n SL > n LC ) , is higher than for a lower-index SL ( n SL < n LC ) .

Fig. 3
Fig. 3

Experimental setup for measuring the integrated sensor and the SL chemo-optic response. The system delivers 2500 sccm of chemical vapor at concentrations between at 0 and 140 000 ppmv. MFC, mass flow controller; BUB, chemical bubbler; QCM, quartz-crystal microbalance.

Fig. 4
Fig. 4

(a) Ellipsometric response, Δ n SL , of the chemically sensitive polymer, HFAPNB, to 140 ppmv of methanol vapor. (b) The corresponding QCM response. For low concentrations, Δ n SL responds linearly with mass uptake and concentration with Δ n SL 5.4 × 10 3 ( cm 2 g ) and Δ n SL 5.6 × 10 6 ( 1 ppmv ) .

Fig. 5
Fig. 5

Representative multimode patterns. (a) Captured CCD image. (b) Corresponding intensity profile. (c) Pixel power difference pattern for 37 ppmv CH 3 OH . This difference in the patterns indicates detection. (d) Pixel power difference pattern with no applied chemical. All patterns are 100 μ m wide.

Fig. 6
Fig. 6

(a) Simulated and (b) measured multimode difference patterns, which show the pattern changes after a methanol vapor concentration change of 35 ppmv. This corresponds to a SL index change of 2 × 10 4 .

Fig. 7
Fig. 7

Magnitude and direction of response vary considerably among three representative pixels as the methanol vapor concentration changes between 24, 54, 75, 149, 59, 30, 15, and 8 ppmv.

Fig. 8
Fig. 8

Simulated (curves) and experimental (circles) sensor responses as measured by the S FOM to an increase in the sense layer index, establishing a direct link between the FOM and the SL index change. Simulated response is shown for pixels with 1.35, 4, and 8 μ m pitches; experimental response corresponds to a 1.35 μ m pixel pitch.

Fig. 9
Fig. 9

Aggregate response of all pixels, as quantified by the modal pattern FOM, S. Same concentration changes as in Fig. 7.

Fig. 10
Fig. 10

Comparison between the standard deviation, σ, and the intensity, I, of the measured sensor system (triangles) and the standard deviation estimated for a fully integrated sensor limited by fundamental noise sources (dashed curve), essentially shot noise. This represents a 4 6 × reduction in the noise.

Fig. 11
Fig. 11

Simulated data (triangles) showing the effect of spatial resolution in the detected multimode pattern on device sensitivity. An increase in pixel pitch from 1.35 to 2.8 μ m reduces sensitivity by 2.1 × . Experimental sensitivity (about one third of simulated data at the same spatial bandwidth) is indicated by the cross.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = n eff n SL n SL + n eff h SL h SL .
Δ P ( t , j ) P ( t , j ) P ( 0 , j ) 1 min ,
Δ P w t ( t ) = j = 1 N w j Δ P ( t , j ) .
Δ P w t ( t ) = j = 1 N Δ P ( t , j ) σ j 2 Δ P ( t , j ) ,
S ( t ) [ j = 1 N ( Δ P ) 2 ( t , j ) σ j 2 ] 1 2 .
p E = p ( NC ) p ( C NC ) + p ( C ) p ( NC C ) ,

Metrics