Abstract

We demonstrate an integrated evanescent-field multimode Mach–Zehnder interferometric chemical–biological sensor, fabricated on silicon, with sensitivity of parts per 109 achieved by modal pattern tracking and analysis. This sensor is fully compatible with the fabrication constraints of the silicon–complementary-metal-oxide-semiconductor (Si-CMOS) process. Furthermore, using the separately measured ellipsometric response together with the mass uptake of agent by the polymer sensing layer, we validate sensor performance via simulation and measure an absolute index sensitivity of 2.5×106. We then extend this to a fully integrated chemical–biological sensor by considering the fundamental noise performance of CMOS detectors. We find that relatively short, <5000μm long, interferometric sensing elements, with modal pattern analysis, allow fully integrated optical sensors on Si-CMOS (assuming a 2.8μm pixel pitch) with an index sensitivity of 9.2×107 and a corresponding concentration sensitivity of 170 parts per 109 for methanol in N2.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription