Abstract

We present a technique to measure the tensor components of the Raman gain spectrum in a short piece of optical fiber. Using this approach, we obtain results for the frequency dependence of the Raman gain tensor in a silica-based fiber for Raman shifts from less than 1 to over 15 THz. We compare these data with measurements of spontaneous Raman scattering in bulk silica and find good agreement for the depolarization ratio, including in the low-frequency regime.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Winterling, "Very-low-frequency Raman scattering in vitreous silica," Phys. Rev. B 12, 2432-2440 (1975).
    [CrossRef]
  2. D. M. Krol and J. G. van Lierop, "The densification of monolithic gels," J. Non-Cryst. Solids 63, 131-144 (1984).
    [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  4. A. Saissy, "Spontaneous Raman scattering and polarization mode coupling in polarization-maintaining optical fibers," J. Lightwave Technol. LT-5, 1045-1049 (1987).
    [CrossRef]
  5. D. J. Dougherty, F. X. Kartner, H. A. Haus, and E. P. Ippen, "Measurement of the Raman gain spectrum of optical fibers," Opt. Lett. 20, 31-33 (1995).
    [CrossRef] [PubMed]
  6. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, "Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings," Opt. Express 13, 2236-2244 (2005).
    [CrossRef] [PubMed]
  7. R. H. Stolen, "Issues in Raman gain measurements," in Technical Digest Symposium on Optical Fiber Measurements (National Institute of Standards and Technology, 2000), pp. 139-142.
  8. S. V. Chernikov and P. V. Mamyshev, "Effect of polarization on Raman scattering in optical fibers," Sov. Lightwave Commun. 1, 301-312 (1991).
  9. Y. P. Svirko and N. I. Zheludev, "Propagation of partially polarized light," Phys. Rev. A 50, 709-713 (1994).
    [CrossRef] [PubMed]
  10. Disclaimer: Certain commercial equipment, software, instruments, or materials are identified in this paper to foster understanding and does not imply recommendation or endorsement by National Institute of Standards and Technology, nor does it imply that the material or equipment identified are necessarily the best available for that purpose.
  11. S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, "Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers," IEE Proc.-J: Optoelectron. 136, 301-306 (1989).
    [CrossRef]
  12. Y. Kang, "Calculations and measurements of Raman gain coefficients of different fiber types," M.S. thesis (Virginia Institute of Technology, Blacksburg, Va., 2002).

2005 (1)

1995 (1)

1994 (1)

Y. P. Svirko and N. I. Zheludev, "Propagation of partially polarized light," Phys. Rev. A 50, 709-713 (1994).
[CrossRef] [PubMed]

1991 (1)

S. V. Chernikov and P. V. Mamyshev, "Effect of polarization on Raman scattering in optical fibers," Sov. Lightwave Commun. 1, 301-312 (1991).

1989 (1)

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, "Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers," IEE Proc.-J: Optoelectron. 136, 301-306 (1989).
[CrossRef]

1987 (1)

A. Saissy, "Spontaneous Raman scattering and polarization mode coupling in polarization-maintaining optical fibers," J. Lightwave Technol. LT-5, 1045-1049 (1987).
[CrossRef]

1984 (1)

D. M. Krol and J. G. van Lierop, "The densification of monolithic gels," J. Non-Cryst. Solids 63, 131-144 (1984).
[CrossRef]

1975 (1)

G. Winterling, "Very-low-frequency Raman scattering in vitreous silica," Phys. Rev. B 12, 2432-2440 (1975).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Ainslie, B. J.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, "Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers," IEE Proc.-J: Optoelectron. 136, 301-306 (1989).
[CrossRef]

Chen, J.

Chernikov, S. V.

S. V. Chernikov and P. V. Mamyshev, "Effect of polarization on Raman scattering in optical fibers," Sov. Lightwave Commun. 1, 301-312 (1991).

Davey, S. T.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, "Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers," IEE Proc.-J: Optoelectron. 136, 301-306 (1989).
[CrossRef]

Dougherty, D. J.

Haus, H. A.

Ippen, E. P.

Kang, Y.

Y. Kang, "Calculations and measurements of Raman gain coefficients of different fiber types," M.S. thesis (Virginia Institute of Technology, Blacksburg, Va., 2002).

Kartner, F. X.

Krol, D. M.

D. M. Krol and J. G. van Lierop, "The densification of monolithic gels," J. Non-Cryst. Solids 63, 131-144 (1984).
[CrossRef]

Kumar, P.

Lee, K. F.

Li, X.

Mamyshev, P. V.

S. V. Chernikov and P. V. Mamyshev, "Effect of polarization on Raman scattering in optical fibers," Sov. Lightwave Commun. 1, 301-312 (1991).

Rothwell, W. J.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, "Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers," IEE Proc.-J: Optoelectron. 136, 301-306 (1989).
[CrossRef]

Saissy, A.

A. Saissy, "Spontaneous Raman scattering and polarization mode coupling in polarization-maintaining optical fibers," J. Lightwave Technol. LT-5, 1045-1049 (1987).
[CrossRef]

Stolen, R. H.

R. H. Stolen, "Issues in Raman gain measurements," in Technical Digest Symposium on Optical Fiber Measurements (National Institute of Standards and Technology, 2000), pp. 139-142.

Svirko, Y. P.

Y. P. Svirko and N. I. Zheludev, "Propagation of partially polarized light," Phys. Rev. A 50, 709-713 (1994).
[CrossRef] [PubMed]

van Lierop, J. G.

D. M. Krol and J. G. van Lierop, "The densification of monolithic gels," J. Non-Cryst. Solids 63, 131-144 (1984).
[CrossRef]

Voss, P. L.

Wakefield, B.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, "Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers," IEE Proc.-J: Optoelectron. 136, 301-306 (1989).
[CrossRef]

Williams, D. L.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, "Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers," IEE Proc.-J: Optoelectron. 136, 301-306 (1989).
[CrossRef]

Winterling, G.

G. Winterling, "Very-low-frequency Raman scattering in vitreous silica," Phys. Rev. B 12, 2432-2440 (1975).
[CrossRef]

Zheludev, N. I.

Y. P. Svirko and N. I. Zheludev, "Propagation of partially polarized light," Phys. Rev. A 50, 709-713 (1994).
[CrossRef] [PubMed]

IEE Proc.-J: Optoelectron. (1)

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, "Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers," IEE Proc.-J: Optoelectron. 136, 301-306 (1989).
[CrossRef]

J. Lightwave Technol. (1)

A. Saissy, "Spontaneous Raman scattering and polarization mode coupling in polarization-maintaining optical fibers," J. Lightwave Technol. LT-5, 1045-1049 (1987).
[CrossRef]

J. Non-Cryst. Solids (1)

D. M. Krol and J. G. van Lierop, "The densification of monolithic gels," J. Non-Cryst. Solids 63, 131-144 (1984).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

Y. P. Svirko and N. I. Zheludev, "Propagation of partially polarized light," Phys. Rev. A 50, 709-713 (1994).
[CrossRef] [PubMed]

Phys. Rev. B (1)

G. Winterling, "Very-low-frequency Raman scattering in vitreous silica," Phys. Rev. B 12, 2432-2440 (1975).
[CrossRef]

Sov. Lightwave Commun. (1)

S. V. Chernikov and P. V. Mamyshev, "Effect of polarization on Raman scattering in optical fibers," Sov. Lightwave Commun. 1, 301-312 (1991).

Other (4)

R. H. Stolen, "Issues in Raman gain measurements," in Technical Digest Symposium on Optical Fiber Measurements (National Institute of Standards and Technology, 2000), pp. 139-142.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Disclaimer: Certain commercial equipment, software, instruments, or materials are identified in this paper to foster understanding and does not imply recommendation or endorsement by National Institute of Standards and Technology, nor does it imply that the material or equipment identified are necessarily the best available for that purpose.

Y. Kang, "Calculations and measurements of Raman gain coefficients of different fiber types," M.S. thesis (Virginia Institute of Technology, Blacksburg, Va., 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the apparatus for the Raman gain measurement. Thick solid lines, the polarization-maintaining fiber; thin solid lines, the single-mode fiber. Electrical connections are shown by dashed lines. PD, photodiode; PM, polarization maintaining.

Fig. 2
Fig. 2

Apparatus for spontaneous Raman scattering in a bulk sample, as described in the text.

Fig. 3
Fig. 3

Experimental data for the polarized Raman gain in an optical fiber as a function of the Raman frequency shift.

Fig. 4
Fig. 4

Experimental depolarization ratio D of the Raman gain. The inset shows the depolarization ratio for small Raman frequency shifts.

Fig. 5
Fig. 5

Comparison of the experimental depolarization ratio measured by the Raman gain technique in an optical fiber (points) and spontaneous Raman scattering in a bulk sample (curve). The uncertainty in the spontaneous Raman measurement is ± 4.8 % .

Tables (1)

Tables Icon

Table 1 Local Raman Gain Properties

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S , ( z ) z = α ( ω s ) S , ( z ) + g , A eff 1 P 0 ( L ) S , ( z ) exp [ α ( ω p ) ( L z ) ] .
D = g g .
S 0 , ( L ) = S 0 , ( 0 ) exp { α ( ω s ) L + g , A eff 1 P 0 ( L ) 1 exp [ α ( ω p ) L ] α ( ω p ) } .
S 0 , ( L ) = [ 1 + g , A eff 1 P 0 ( 0 ) L α ( ω s ) L ] S 0 , ( 0 ) .
S 0 , ( L , f p + f s ) = 1 2 g , A eff 1 L P 0 ( 0 ) S 0 , ( 0 ) ,
g = g + g x y x y + g x y y x .
g = g x y x y .
g x y y x = g 2 g .
S 0 ( z ) z = α ( ω s ) S 0 ( z ) + 1 2 ( g + g ) A eff 1 S 0 ( z ) P 0 ( z ) + 1 2 ( g g ) A eff 1 [ S 1 ( z ) P 1 ( z ) + S 2 ( z ) P 2 ( z ) ] + 1 2 ( g 3 g ) A eff 1 S 3 ( z ) P 3 ( z ) .
1 2 ( g + g ) + 1 2 ( g g ) m ,

Metrics