Abstract

We present an evaluation of the long-term frequency instability and environmental sensitivity of a chip-scale atomic clock based on coherent population trapping, particularly as affected by the light-source subassembly. The long-term frequency stability of this type of device can be dramatically improved by judicious choice of operating parameters of the light-source subassembly. We find that the clock frequency is influenced by the laser-injection current, the laser temperature, and the rf modulation index. The sensitivity of the clock frequency to changes in the laser-injection current or the substrate temperature can be significantly reduced through adjustment of the rf modulation index. This makes the requirements imposed on the laser-temperature stabilization, in order to achieve a given frequency stability, less severe. The clock-frequency instability due to variations in local oscillator power is shown to be reduced through the choice of an appropriate light intensity inside the cell. The importance of these parameters with regard to the long-term stability of such systems is discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Knappe, L. Liew, V. Shah, P. D. D. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
    [CrossRef]
  2. M. Bloch, I. Pascaru, C. Stone, and T. McClelland, "Subminiature rubidium frequency standard for commercial applications," in Proceedings of the 47th IEEE International Frequency Control Symposium (IEEE, 1993), p. 164.
  3. P. J. Chantry, I. Liberman, W. R. Verbanets, C. F. Petronio, R. L. Cather, and W. D. Partlow, "Miniature laser-pumped cesium cell atomic clock oscillator," in Proceedings of the 50th IEEE International Frequency Control Symposium (IEEE, 1996), p. 1002.
    [CrossRef]
  4. J. Vanier, M. Levine, S. Kendig, D. Janssen, C. Everson, and M. Delaney, "Practical realization of a passive coherent population trapping frequency standard," in Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference (IEEE, 2004), pp. 92-99.
  5. R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).
  6. S. Knappe, V. Gerginov, P. Schwindt, V. Shah, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
    [CrossRef] [PubMed]
  7. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, 1st ed. (Adam Hilger, 1989).
    [CrossRef]
  8. W. Happer, "Optical Pumping," Rev. Mod. Phys. 44, 169-249 (1972).
    [CrossRef]
  9. J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
    [CrossRef]
  10. J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000).
    [CrossRef]
  11. L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
    [CrossRef]
  12. S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 31-32.
    [CrossRef]
  13. E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics, Vol. XXXV, E.Wolf, ed. (Elsevier, 1996), pp. 257-354.
    [CrossRef]
  14. S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on Rb-87 with improved frequency stability," Opt. Express 13, 1249-1253 (2005).
    [CrossRef] [PubMed]
  15. J. Vanier, A. Godone, and F. Levi, "Coherent microwave emission in coherent population trapping: origin of the energy and of the quadratic light shift," in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (IEEE, 1999), pp. 96-99.
    [CrossRef]
  16. M. Zhu and L. Cutler, "Theoretical and experimental study of light shift in CPT-based Rb vapor cell frequency standard," in Proceedings of the 32th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2000), pp. 311-324.
  17. M. Zhu and S. Cutler, "Coherent population trapping-based frequency standard having a reduced magnitude of total A.C. stark shift," U.S. patent 6,201,821 (March 13, 2001).
  18. S. Kobayashi, Y. Yamamoto, Y. Ito, and T. Kimura, "Direct modulation in Al-GaAs semiconductor lasers," IEEE J. Quantum Electron. 18, 582-595 (1982).
    [CrossRef]
  19. P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and effective modulation of diode lasers," Laser Phys. 11, 891-896 (2001).
  20. C. H. Henry, "Theory of the linewidth of semiconductor-lasers," IEEE J. Quantum Electron. 18, 259-264 (1982).
    [CrossRef]
  21. K. Vahala and A. Yariv, "Semiclassical theory of noise in semiconductor-lasers part 1," IEEE J. Quantum Electron. 19, 1096-1101 (1983).
    [CrossRef]
  22. H. P. Zappe, "Vertical cavity lasers for atomic time standards," in Proceedings of the 31st Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 1999).
  23. H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
    [CrossRef]
  24. J. Vanier, "Coherent population trapping for the realization of a small, stable atomic clock," in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (IEEE, 2002), p. 424.
    [CrossRef]
  25. R. Lutwak, D. Emmons, W. Riley, and R. M. Garvey, "The chip-scale atomic clock-coherent population trapping vs. conventional interrogation," in Proceedings of the 34th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2002).

2005 (2)

2004 (2)

S. Knappe, L. Liew, V. Shah, P. D. D. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

2001 (1)

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and effective modulation of diode lasers," Laser Phys. 11, 891-896 (2001).

2000 (1)

J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000).
[CrossRef]

1999 (1)

H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
[CrossRef]

1998 (1)

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

1983 (1)

K. Vahala and A. Yariv, "Semiclassical theory of noise in semiconductor-lasers part 1," IEEE J. Quantum Electron. 19, 1096-1101 (1983).
[CrossRef]

1982 (2)

C. H. Henry, "Theory of the linewidth of semiconductor-lasers," IEEE J. Quantum Electron. 18, 259-264 (1982).
[CrossRef]

S. Kobayashi, Y. Yamamoto, Y. Ito, and T. Kimura, "Direct modulation in Al-GaAs semiconductor lasers," IEEE J. Quantum Electron. 18, 582-595 (1982).
[CrossRef]

1972 (1)

W. Happer, "Optical Pumping," Rev. Mod. Phys. 44, 169-249 (1972).
[CrossRef]

Arimondo, E.

E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics, Vol. XXXV, E.Wolf, ed. (Elsevier, 1996), pp. 257-354.
[CrossRef]

Audoin, C.

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, 1st ed. (Adam Hilger, 1989).
[CrossRef]

Balykin, V. I.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and effective modulation of diode lasers," Laser Phys. 11, 891-896 (2001).

Bloch, M.

M. Bloch, I. Pascaru, C. Stone, and T. McClelland, "Subminiature rubidium frequency standard for commercial applications," in Proceedings of the 47th IEEE International Frequency Control Symposium (IEEE, 1993), p. 164.

Cather, R. L.

P. J. Chantry, I. Liberman, W. R. Verbanets, C. F. Petronio, R. L. Cather, and W. D. Partlow, "Miniature laser-pumped cesium cell atomic clock oscillator," in Proceedings of the 50th IEEE International Frequency Control Symposium (IEEE, 1996), p. 1002.
[CrossRef]

Chantry, P. J.

P. J. Chantry, I. Liberman, W. R. Verbanets, C. F. Petronio, R. L. Cather, and W. D. Partlow, "Miniature laser-pumped cesium cell atomic clock oscillator," in Proceedings of the 50th IEEE International Frequency Control Symposium (IEEE, 1996), p. 1002.
[CrossRef]

Cutler, L.

M. Zhu and L. Cutler, "Theoretical and experimental study of light shift in CPT-based Rb vapor cell frequency standard," in Proceedings of the 32th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2000), pp. 311-324.

Cutler, S.

M. Zhu and S. Cutler, "Coherent population trapping-based frequency standard having a reduced magnitude of total A.C. stark shift," U.S. patent 6,201,821 (March 13, 2001).

Delaney, M.

J. Vanier, M. Levine, S. Kendig, D. Janssen, C. Everson, and M. Delaney, "Practical realization of a passive coherent population trapping frequency standard," in Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference (IEEE, 2004), pp. 92-99.

Deng, J.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

Ebeling, K. J.

H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
[CrossRef]

Eberhard, F.

H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
[CrossRef]

Emmons, D.

R. Lutwak, D. Emmons, W. Riley, and R. M. Garvey, "The chip-scale atomic clock-coherent population trapping vs. conventional interrogation," in Proceedings of the 34th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2002).

Everson, C.

J. Vanier, M. Levine, S. Kendig, D. Janssen, C. Everson, and M. Delaney, "Practical realization of a passive coherent population trapping frequency standard," in Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference (IEEE, 2004), pp. 92-99.

Garvey, R. M.

R. Lutwak, D. Emmons, W. Riley, and R. M. Garvey, "The chip-scale atomic clock-coherent population trapping vs. conventional interrogation," in Proceedings of the 34th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2002).

Geib, K. M.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

Gerginov, V.

Godone, A.

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

J. Vanier, A. Godone, and F. Levi, "Coherent microwave emission in coherent population trapping: origin of the energy and of the quadratic light shift," in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (IEEE, 1999), pp. 96-99.
[CrossRef]

Grabherr, M.

H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
[CrossRef]

Happer, W.

W. Happer, "Optical Pumping," Rev. Mod. Phys. 44, 169-249 (1972).
[CrossRef]

Henry, C. H.

C. H. Henry, "Theory of the linewidth of semiconductor-lasers," IEEE J. Quantum Electron. 18, 259-264 (1982).
[CrossRef]

Hollberg, L.

S. Knappe, V. Gerginov, P. Schwindt, V. Shah, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
[CrossRef] [PubMed]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on Rb-87 with improved frequency stability," Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

S. Knappe, L. Liew, V. Shah, P. D. D. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000).
[CrossRef]

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 31-32.
[CrossRef]

Ito, Y.

S. Kobayashi, Y. Yamamoto, Y. Ito, and T. Kimura, "Direct modulation in Al-GaAs semiconductor lasers," IEEE J. Quantum Electron. 18, 582-595 (1982).
[CrossRef]

Jäger, R.

H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
[CrossRef]

Janssen, D.

J. Vanier, M. Levine, S. Kendig, D. Janssen, C. Everson, and M. Delaney, "Practical realization of a passive coherent population trapping frequency standard," in Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference (IEEE, 2004), pp. 92-99.

Kendig, S.

J. Vanier, M. Levine, S. Kendig, D. Janssen, C. Everson, and M. Delaney, "Practical realization of a passive coherent population trapping frequency standard," in Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference (IEEE, 2004), pp. 92-99.

Kimura, T.

S. Kobayashi, Y. Yamamoto, Y. Ito, and T. Kimura, "Direct modulation in Al-GaAs semiconductor lasers," IEEE J. Quantum Electron. 18, 582-595 (1982).
[CrossRef]

Kitching, J.

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on Rb-87 with improved frequency stability," Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Gerginov, P. Schwindt, V. Shah, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
[CrossRef] [PubMed]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

S. Knappe, L. Liew, V. Shah, P. D. D. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000).
[CrossRef]

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 31-32.
[CrossRef]

Knappe, S.

S. Knappe, V. Gerginov, P. Schwindt, V. Shah, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005).
[CrossRef] [PubMed]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on Rb-87 with improved frequency stability," Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

S. Knappe, L. Liew, V. Shah, P. D. D. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000).
[CrossRef]

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 31-32.
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, Y. Ito, and T. Kimura, "Direct modulation in Al-GaAs semiconductor lasers," IEEE J. Quantum Electron. 18, 582-595 (1982).
[CrossRef]

Leblanc, J.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

Levi, F.

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

J. Vanier, A. Godone, and F. Levi, "Coherent microwave emission in coherent population trapping: origin of the energy and of the quadratic light shift," in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (IEEE, 1999), pp. 96-99.
[CrossRef]

Levine, M.

J. Vanier, M. Levine, S. Kendig, D. Janssen, C. Everson, and M. Delaney, "Practical realization of a passive coherent population trapping frequency standard," in Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference (IEEE, 2004), pp. 92-99.

Liberman, I.

P. J. Chantry, I. Liberman, W. R. Verbanets, C. F. Petronio, R. L. Cather, and W. D. Partlow, "Miniature laser-pumped cesium cell atomic clock oscillator," in Proceedings of the 50th IEEE International Frequency Control Symposium (IEEE, 1996), p. 1002.
[CrossRef]

Liew, L.

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on Rb-87 with improved frequency stability," Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

S. Knappe, L. Liew, V. Shah, P. D. D. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 31-32.
[CrossRef]

Liew, L. A.

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

Lutwak, R.

R. Lutwak, D. Emmons, W. Riley, and R. M. Garvey, "The chip-scale atomic clock-coherent population trapping vs. conventional interrogation," in Proceedings of the 34th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2002).

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

McClelland, T.

M. Bloch, I. Pascaru, C. Stone, and T. McClelland, "Subminiature rubidium frequency standard for commercial applications," in Proceedings of the 47th IEEE International Frequency Control Symposium (IEEE, 1993), p. 164.

Mederer, F.

H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
[CrossRef]

Melentiev, P. N.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and effective modulation of diode lasers," Laser Phys. 11, 891-896 (2001).

Mescher, M.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

Moreland, J.

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on Rb-87 with improved frequency stability," Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

S. Knappe, L. Liew, V. Shah, P. D. D. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 31-32.
[CrossRef]

Partlow, W. D.

P. J. Chantry, I. Liberman, W. R. Verbanets, C. F. Petronio, R. L. Cather, and W. D. Partlow, "Miniature laser-pumped cesium cell atomic clock oscillator," in Proceedings of the 50th IEEE International Frequency Control Symposium (IEEE, 1996), p. 1002.
[CrossRef]

Pascaru, I.

M. Bloch, I. Pascaru, C. Stone, and T. McClelland, "Subminiature rubidium frequency standard for commercial applications," in Proceedings of the 47th IEEE International Frequency Control Symposium (IEEE, 1993), p. 164.

Peake, G. M.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

Petronio, C. F.

P. J. Chantry, I. Liberman, W. R. Verbanets, C. F. Petronio, R. L. Cather, and W. D. Partlow, "Miniature laser-pumped cesium cell atomic clock oscillator," in Proceedings of the 50th IEEE International Frequency Control Symposium (IEEE, 1996), p. 1002.
[CrossRef]

Riedl, M.

H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
[CrossRef]

Riley, W.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

R. Lutwak, D. Emmons, W. Riley, and R. M. Garvey, "The chip-scale atomic clock-coherent population trapping vs. conventional interrogation," in Proceedings of the 34th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2002).

Robinson, H.

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

Robinson, H. G.

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 31-32.
[CrossRef]

Schwindt, P.

Schwindt, P. D. D.

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, "A chip-scale atomic clock based on Rb-87 with improved frequency stability," Opt. Express 13, 1249-1253 (2005).
[CrossRef] [PubMed]

S. Knappe, L. Liew, V. Shah, P. D. D. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

Serkland, D. K.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

Shah, V.

Stone, C.

M. Bloch, I. Pascaru, C. Stone, and T. McClelland, "Subminiature rubidium frequency standard for commercial applications," in Proceedings of the 47th IEEE International Frequency Control Symposium (IEEE, 1993), p. 164.

Subbotin, M. V.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and effective modulation of diode lasers," Laser Phys. 11, 891-896 (2001).

Tepolt, G.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

Unold, H. J.

H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
[CrossRef]

Vahala, K.

K. Vahala and A. Yariv, "Semiclassical theory of noise in semiconductor-lasers part 1," IEEE J. Quantum Electron. 19, 1096-1101 (1983).
[CrossRef]

Vanier, J.

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

J. Vanier, "Coherent population trapping for the realization of a small, stable atomic clock," in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (IEEE, 2002), p. 424.
[CrossRef]

J. Vanier, M. Levine, S. Kendig, D. Janssen, C. Everson, and M. Delaney, "Practical realization of a passive coherent population trapping frequency standard," in Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference (IEEE, 2004), pp. 92-99.

J. Vanier, A. Godone, and F. Levi, "Coherent microwave emission in coherent population trapping: origin of the energy and of the quadratic light shift," in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (IEEE, 1999), pp. 96-99.
[CrossRef]

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, 1st ed. (Adam Hilger, 1989).
[CrossRef]

Varghese, M.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

Velichansky, V.

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 31-32.
[CrossRef]

Verbanets, W. R.

P. J. Chantry, I. Liberman, W. R. Verbanets, C. F. Petronio, R. L. Cather, and W. D. Partlow, "Miniature laser-pumped cesium cell atomic clock oscillator," in Proceedings of the 50th IEEE International Frequency Control Symposium (IEEE, 1996), p. 1002.
[CrossRef]

Vukicevic, M.

J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000).
[CrossRef]

Weidmann, W.

J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000).
[CrossRef]

Wynands, R.

J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000).
[CrossRef]

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, Y. Ito, and T. Kimura, "Direct modulation in Al-GaAs semiconductor lasers," IEEE J. Quantum Electron. 18, 582-595 (1982).
[CrossRef]

Yariv, A.

K. Vahala and A. Yariv, "Semiclassical theory of noise in semiconductor-lasers part 1," IEEE J. Quantum Electron. 19, 1096-1101 (1983).
[CrossRef]

Zappe, H. P.

H. P. Zappe, "Vertical cavity lasers for atomic time standards," in Proceedings of the 31st Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 1999).

Zhu, M.

M. Zhu and L. Cutler, "Theoretical and experimental study of light shift in CPT-based Rb vapor cell frequency standard," in Proceedings of the 32th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2000), pp. 311-324.

M. Zhu and S. Cutler, "Coherent population trapping-based frequency standard having a reduced magnitude of total A.C. stark shift," U.S. patent 6,201,821 (March 13, 2001).

Appl. Phys. Lett. (2)

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004).
[CrossRef]

S. Knappe, L. Liew, V. Shah, P. D. D. Schwindt, J. Moreland, L. Hollberg, and J. Kitching, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004).
[CrossRef]

Electron. Lett. (1)

H. J. Unold, M. Grabherr, F. Eberhard, F. Mederer, R. Jäger, M. Riedl, and K. J. Ebeling, "An increased-area oxidized single-fundamental mode VCSEL with a self-aligned shallow etched surface relief," Electron. Lett. 35, 1340-1341 (1999).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Kobayashi, Y. Yamamoto, Y. Ito, and T. Kimura, "Direct modulation in Al-GaAs semiconductor lasers," IEEE J. Quantum Electron. 18, 582-595 (1982).
[CrossRef]

C. H. Henry, "Theory of the linewidth of semiconductor-lasers," IEEE J. Quantum Electron. 18, 259-264 (1982).
[CrossRef]

K. Vahala and A. Yariv, "Semiclassical theory of noise in semiconductor-lasers part 1," IEEE J. Quantum Electron. 19, 1096-1101 (1983).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. Kitching, S. Knappe, M. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, "A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor," IEEE Trans. Instrum. Meas. 49, 1313-1317 (2000).
[CrossRef]

Laser Phys. (1)

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and effective modulation of diode lasers," Laser Phys. 11, 891-896 (2001).

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

J. Vanier, A. Godone, and F. Levi, "Coherent population trapping in cesium: dark lines and coherent microwave emission," Phys. Rev. A 58, 2345-2358 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

W. Happer, "Optical Pumping," Rev. Mod. Phys. 44, 169-249 (1972).
[CrossRef]

Other (13)

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, 1st ed. (Adam Hilger, 1989).
[CrossRef]

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (IEEE, 2003), pp. 31-32.
[CrossRef]

E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics, Vol. XXXV, E.Wolf, ed. (Elsevier, 1996), pp. 257-354.
[CrossRef]

J. Vanier, A. Godone, and F. Levi, "Coherent microwave emission in coherent population trapping: origin of the energy and of the quadratic light shift," in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (IEEE, 1999), pp. 96-99.
[CrossRef]

M. Zhu and L. Cutler, "Theoretical and experimental study of light shift in CPT-based Rb vapor cell frequency standard," in Proceedings of the 32th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2000), pp. 311-324.

M. Zhu and S. Cutler, "Coherent population trapping-based frequency standard having a reduced magnitude of total A.C. stark shift," U.S. patent 6,201,821 (March 13, 2001).

H. P. Zappe, "Vertical cavity lasers for atomic time standards," in Proceedings of the 31st Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 1999).

M. Bloch, I. Pascaru, C. Stone, and T. McClelland, "Subminiature rubidium frequency standard for commercial applications," in Proceedings of the 47th IEEE International Frequency Control Symposium (IEEE, 1993), p. 164.

P. J. Chantry, I. Liberman, W. R. Verbanets, C. F. Petronio, R. L. Cather, and W. D. Partlow, "Miniature laser-pumped cesium cell atomic clock oscillator," in Proceedings of the 50th IEEE International Frequency Control Symposium (IEEE, 1996), p. 1002.
[CrossRef]

J. Vanier, M. Levine, S. Kendig, D. Janssen, C. Everson, and M. Delaney, "Practical realization of a passive coherent population trapping frequency standard," in Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference (IEEE, 2004), pp. 92-99.

R. Lutwak, J. Deng, W. Riley, M. Varghese, J. Leblanc, G. Tepolt, M. Mescher, D. K. Serkland, K. M. Geib, and G. M. Peake, "The chip-scale atomic clock-low-power physics package," in Proceedings of the 36th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2004).

J. Vanier, "Coherent population trapping for the realization of a small, stable atomic clock," in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (IEEE, 2002), p. 424.
[CrossRef]

R. Lutwak, D. Emmons, W. Riley, and R. M. Garvey, "The chip-scale atomic clock-coherent population trapping vs. conventional interrogation," in Proceedings of the 34th Precise Time and Time Interval (PTTI) Systems and Applications Meeting (U.S. Naval Observatory, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup. VCSEL, vertical-cavity surface-emitting laser; λ 4 , quarter wave plate; NDF, neutral density filter; PD, photodetector. (b) Block diagram showing how the clock design and external controls determine the light field operating configuration and the resulting physical shift of the clock frequency.

Fig. 2
Fig. 2

(Color online) Fractional clock-frequency deviation versus diode laser temperature at different rf powers. (a) Etched mesa laser. Triangles, 11 dBm ; circles, 13 dBm ; squares, 13.5 dBm . (b) Oxide-confined laser. Triangles, 11 dBm ; circles, 9.5 dBm ; squares, 8 dBm . The shaded area represents the region where the fractional frequency deviation versus the laser temperature was approximated with a linear (squares, open triangles) or quadratic (circles) dependence. The traces have been offset for convenience. Each point represents 50 s integration time.

Fig. 3
Fig. 3

(Color online) Allan deviation for the CPT clock without laser-temperature compensation (the oxide-confined laser). Triangles, rf power of 6.5 dBm , adjusted for best short-term frequency stability; squares, rf power of 9.5 dBm , adjusted for weakest dependence of clock frequency on substrate temperature.

Fig. 4
Fig. 4

(Color online) Fractional clock-frequency deviation versus rf power at different laser intensities. Stars, 170 μ W cm 2 ; diamonds, 116 μ W cm 2 ; triangles, 88 μ W cm 2 ; circles, 66 μ W cm 2 ; squares, 53 μ W cm 2 . The intensity inside the cell was changed by placing a neutral density filter between the laser and the cell. The selected region shows 1.4 × 10 12 ( % ) 2 clock-fractional-frequency deviation per percent squared rf power change. Each point represents 50 s integration time.

Metrics