Abstract

We present an evaluation of the long-term frequency instability and environmental sensitivity of a chip-scale atomic clock based on coherent population trapping, particularly as affected by the light-source subassembly. The long-term frequency stability of this type of device can be dramatically improved by judicious choice of operating parameters of the light-source subassembly. We find that the clock frequency is influenced by the laser-injection current, the laser temperature, and the rf modulation index. The sensitivity of the clock frequency to changes in the laser-injection current or the substrate temperature can be significantly reduced through adjustment of the rf modulation index. This makes the requirements imposed on the laser-temperature stabilization, in order to achieve a given frequency stability, less severe. The clock-frequency instability due to variations in local oscillator power is shown to be reduced through the choice of an appropriate light intensity inside the cell. The importance of these parameters with regard to the long-term stability of such systems is discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rubidium chip-scale atomic clock with improved long-term stability through light intensity optimization and compensation for laser frequency detuning

Yaolin Zhang, Wanpeng Yang, Shuangyou Zhang, and Jianye Zhao
J. Opt. Soc. Am. B 33(8) 1756-1763 (2016)

Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability

S. Knappe, V. Gerginov, P. D.D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching
Opt. Lett. 30(18) 2351-2353 (2005)

A chip-scale atomic clock based on 87Rb with improved frequency stability

S. Knappe, P.D.D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland
Opt. Express 13(4) 1249-1253 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription