N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

A. Grbic and G. V. Eleftheriades, "An isotropic three-dimensional negative-refractive-index transmission-line metamaterial," J. Appl. Phys. 98, 043106 (2005).

[CrossRef]

F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, "Resonant frequencies of a split-ring resonator: analytical solutions and numerical simulations," Microwave Opt. Technol. Lett. 44, 133-136 (2005).

[CrossRef]

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).

[CrossRef]
[PubMed]

A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wirel. Compon. Lett. 14, 68-70 (2004).

[CrossRef]

A. Sanada, C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech. 52, 1252-1263 (2004).

[CrossRef]

A. Grbic and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2604-2611 (2003).

[CrossRef]

A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, "Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial," Opt. Express 11, 696-708 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-696.

[CrossRef]
[PubMed]

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).

[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).

[CrossRef]

G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators," IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).

[CrossRef]

A. Alù and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling, and transparency," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).

[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).

[CrossRef]
[PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).

[CrossRef]
[PubMed]

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. 76, 2480-2483 (1996).

[CrossRef]
[PubMed]

C. R. Brewitt-Taylor and P. B. Johns, "On the construction and numerical solution of transmission-line and lumped network models of Maxwell's equations," Int. J. Numer. Methods Eng. 15, 13-30 (1980).

[CrossRef]

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968) [translation based on the original Russian document, dated 1967].

[CrossRef]

W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. AP-10, 82-85 (1962).

[CrossRef]

R. N. Bracewell, "Analogues of an ionized medium: applications to the ionosphere," Wirel. Eng. 31, 320-326 (1954).

W. E. Kock, "Metallic delay lenses," Bell Syst. Tech. J. 27, 58-82 (1948).

W. E. Kock, "Radio lenses," Bell Lab. Rec. 24, 177-216 (1946).

G. Kron, "Equivalent circuit of the field equations of Maxwell," Proc. IRE 32, 289-299 (1944).

[CrossRef]

J. R. Whinnery and S. Ramo, "A new approach to the solution of high-frequency field problems," Proc. IRE 32, 284-288 (1944).

[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

A. Alù and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling, and transparency," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).

[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

A. K. Iyer, K. G. Balmain, and G. V. Eleftheriades, "Dispersion analysis of resonance cone behaviour in magnetically anisotropic transmission-line metamaterials," in 2004 IEEE Antennas and Propagation Society International Symposium Digest (IEEE, 2004), pp. 3147-3150.

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

R. N. Bracewell, "Analogues of an ionized medium: applications to the ionosphere," Wirel. Eng. 31, 320-326 (1954).

C. R. Brewitt-Taylor and P. B. Johns, "On the construction and numerical solution of transmission-line and lumped network models of Maxwell's equations," Int. J. Numer. Methods Eng. 15, 13-30 (1980).

[CrossRef]

A. Sanada, C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech. 52, 1252-1263 (2004).

[CrossRef]

A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wirel. Compon. Lett. 14, 68-70 (2004).

[CrossRef]

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (Wiley-IEEE, 1990).

[CrossRef]

F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005).

[CrossRef]

A. Grbic and G. V. Eleftheriades, "An isotropic three-dimensional negative-refractive-index transmission-line metamaterial," J. Appl. Phys. 98, 043106 (2005).

[CrossRef]

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).

[CrossRef]
[PubMed]

G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators," IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).

[CrossRef]

A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, "Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial," Opt. Express 11, 696-708 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-696.

[CrossRef]
[PubMed]

A. Grbic and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2604-2611 (2003).

[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

A. K. Iyer, K. G. Balmain, and G. V. Eleftheriades, "Dispersion analysis of resonance cone behaviour in magnetically anisotropic transmission-line metamaterials," in 2004 IEEE Antennas and Propagation Society International Symposium Digest (IEEE, 2004), pp. 3147-3150.

A. Grbic and G. V. Eleftheriades, "Super-resolving negative-refractive-index transmission-line lenses," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 93-170.

[CrossRef]

A. K. Iyer and G. V. Eleftheriades, "Negative-refractive-index transmission-line metamaterials," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 1-52.

[CrossRef]

F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005).

[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

A. Alù and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling, and transparency," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

A. Grbic and G. V. Eleftheriades, "An isotropic three-dimensional negative-refractive-index transmission-line metamaterial," J. Appl. Phys. 98, 043106 (2005).

[CrossRef]

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).

[CrossRef]
[PubMed]

A. Grbic and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2604-2611 (2003).

[CrossRef]

A. Grbic and G. V. Eleftheriades, "Super-resolving negative-refractive-index transmission-line lenses," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 93-170.

[CrossRef]

W. J. Hoefer, P. P. So, D. Thompson, and M. M. Tentzeris, "Topology and design of wideband 3D metamaterials made of periodically loaded transmission line arrays," presented at the IEEE Microwave Theory and Techniques Society International Microwave Symposium, Long Beach, Calif., June 12-17, 2005.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).

[CrossRef]
[PubMed]

A. Sanada, C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech. 52, 1252-1263 (2004).

[CrossRef]

A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wirel. Compon. Lett. 14, 68-70 (2004).

[CrossRef]

A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, "Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial," Opt. Express 11, 696-708 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-696.

[CrossRef]
[PubMed]

G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators," IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).

[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

A. K. Iyer and G. V. Eleftheriades, "Negative-refractive-index transmission-line metamaterials," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 1-52.

[CrossRef]

A. K. Iyer, K. G. Balmain, and G. V. Eleftheriades, "Dispersion analysis of resonance cone behaviour in magnetically anisotropic transmission-line metamaterials," in 2004 IEEE Antennas and Propagation Society International Symposium Digest (IEEE, 2004), pp. 3147-3150.

C. R. Brewitt-Taylor and P. B. Johns, "On the construction and numerical solution of transmission-line and lumped network models of Maxwell's equations," Int. J. Numer. Methods Eng. 15, 13-30 (1980).

[CrossRef]

M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, "Resonant frequencies of a split-ring resonator: analytical solutions and numerical simulations," Microwave Opt. Technol. Lett. 44, 133-136 (2005).

[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).

[CrossRef]

W. E. Kock, "Metallic delay lenses," Bell Syst. Tech. J. 27, 58-82 (1948).

W. E. Kock, "Radio lenses," Bell Lab. Rec. 24, 177-216 (1946).

W. E. Kock, "Metal lens antennas," in Proceedings of IRE and Waves and Electrons (Institute of Radio Engineers, 1946), pp. 828-836.

A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, "Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial," Opt. Express 11, 696-708 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-696.

[CrossRef]
[PubMed]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

G. Kron, "Equivalent circuit of the field equations of Maxwell," Proc. IRE 32, 289-299 (1944).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).

[CrossRef]
[PubMed]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

J. R. Whinnery and S. Ramo, "A new approach to the solution of high-frequency field problems," Proc. IRE 32, 284-288 (1944).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).

[CrossRef]

W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. AP-10, 82-85 (1962).

[CrossRef]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

A. Sanada, C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech. 52, 1252-1263 (2004).

[CrossRef]

A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wirel. Compon. Lett. 14, 68-70 (2004).

[CrossRef]

A. K. Sarychev and V. M. Shalaev, "Plasmonic nanowire materials," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 313-338.

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).

[CrossRef]
[PubMed]

A. K. Sarychev and V. M. Shalaev, "Plasmonic nanowire materials," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 313-338.

[CrossRef]

M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, "Resonant frequencies of a split-ring resonator: analytical solutions and numerical simulations," Microwave Opt. Technol. Lett. 44, 133-136 (2005).

[CrossRef]

M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, "Resonant frequencies of a split-ring resonator: analytical solutions and numerical simulations," Microwave Opt. Technol. Lett. 44, 133-136 (2005).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).

[CrossRef]
[PubMed]

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).

[CrossRef]

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. 76, 2480-2483 (1996).

[CrossRef]
[PubMed]

G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators," IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).

[CrossRef]

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. 76, 2480-2483 (1996).

[CrossRef]
[PubMed]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

R. Simons, Coplanar Waveguide Circuits, Components, and Systems (Wiley, 2001).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).

[CrossRef]
[PubMed]

W. J. Hoefer, P. P. So, D. Thompson, and M. M. Tentzeris, "Topology and design of wideband 3D metamaterials made of periodically loaded transmission line arrays," presented at the IEEE Microwave Theory and Techniques Society International Microwave Symposium, Long Beach, Calif., June 12-17, 2005.

M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, "Resonant frequencies of a split-ring resonator: analytical solutions and numerical simulations," Microwave Opt. Technol. Lett. 44, 133-136 (2005).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).

[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).

[CrossRef]
[PubMed]

W. J. Hoefer, P. P. So, D. Thompson, and M. M. Tentzeris, "Topology and design of wideband 3D metamaterials made of periodically loaded transmission line arrays," presented at the IEEE Microwave Theory and Techniques Society International Microwave Symposium, Long Beach, Calif., June 12-17, 2005.

W. J. Hoefer, P. P. So, D. Thompson, and M. M. Tentzeris, "Topology and design of wideband 3D metamaterials made of periodically loaded transmission line arrays," presented at the IEEE Microwave Theory and Techniques Society International Microwave Symposium, Long Beach, Calif., June 12-17, 2005.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968) [translation based on the original Russian document, dated 1967].

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).

[CrossRef]
[PubMed]

J. R. Whinnery and S. Ramo, "A new approach to the solution of high-frequency field problems," Proc. IRE 32, 284-288 (1944).

[CrossRef]

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. 76, 2480-2483 (1996).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).

[CrossRef]
[PubMed]

W. E. Kock, "Radio lenses," Bell Lab. Rec. 24, 177-216 (1946).

W. E. Kock, "Metallic delay lenses," Bell Syst. Tech. J. 27, 58-82 (1948).

A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wirel. Compon. Lett. 14, 68-70 (2004).

[CrossRef]

G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators," IEEE Microw. Wirel. Compon. Lett. 13, 51-53 (2003).

[CrossRef]

A. Alù and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling, and transparency," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2558-2571 (2003).

[CrossRef]

A. Grbic and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," Special Issue on Metamaterials, IEEE Trans. Antennas Propag. 51, 2604-2611 (2003).

[CrossRef]

J. D. Baena, J. Bonache, F. Martin, R. Marqués Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. García-García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech. 53, 1451-1461 (2005).

[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

A. Sanada, C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech. 52, 1252-1263 (2004).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).

[CrossRef]

C. R. Brewitt-Taylor and P. B. Johns, "On the construction and numerical solution of transmission-line and lumped network models of Maxwell's equations," Int. J. Numer. Methods Eng. 15, 13-30 (1980).

[CrossRef]

W. Rotman, "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag. AP-10, 82-85 (1962).

[CrossRef]

A. Grbic and G. V. Eleftheriades, "An isotropic three-dimensional negative-refractive-index transmission-line metamaterial," J. Appl. Phys. 98, 043106 (2005).

[CrossRef]

M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, "Resonant frequencies of a split-ring resonator: analytical solutions and numerical simulations," Microwave Opt. Technol. Lett. 44, 133-136 (2005).

[CrossRef]

F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005).

[CrossRef]

G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003).

[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).

[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).

[CrossRef]
[PubMed]

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).

[CrossRef]
[PubMed]

D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. 76, 2480-2483 (1996).

[CrossRef]
[PubMed]

N. Engheta, A. Salandrino, and A. Alù, "Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005).

[CrossRef]
[PubMed]

G. Kron, "Equivalent circuit of the field equations of Maxwell," Proc. IRE 32, 289-299 (1944).

[CrossRef]

J. R. Whinnery and S. Ramo, "A new approach to the solution of high-frequency field problems," Proc. IRE 32, 284-288 (1944).

[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).

[CrossRef]
[PubMed]

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968) [translation based on the original Russian document, dated 1967].

[CrossRef]

R. N. Bracewell, "Analogues of an ionized medium: applications to the ionosphere," Wirel. Eng. 31, 320-326 (1954).

W. E. Kock, "Metal lens antennas," in Proceedings of IRE and Waves and Electrons (Institute of Radio Engineers, 1946), pp. 828-836.

R. E. Collin, Field Theory of Guided Waves, 2nd ed. (Wiley-IEEE, 1990).

[CrossRef]

A. K. Sarychev and V. M. Shalaev, "Plasmonic nanowire materials," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 313-338.

[CrossRef]

A. Grbic and G. V. Eleftheriades, "Super-resolving negative-refractive-index transmission-line lenses," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 93-170.

[CrossRef]

W. J. Hoefer, P. P. So, D. Thompson, and M. M. Tentzeris, "Topology and design of wideband 3D metamaterials made of periodically loaded transmission line arrays," presented at the IEEE Microwave Theory and Techniques Society International Microwave Symposium, Long Beach, Calif., June 12-17, 2005.

A. K. Iyer, K. G. Balmain, and G. V. Eleftheriades, "Dispersion analysis of resonance cone behaviour in magnetically anisotropic transmission-line metamaterials," in 2004 IEEE Antennas and Propagation Society International Symposium Digest (IEEE, 2004), pp. 3147-3150.

A. K. Iyer and G. V. Eleftheriades, "Negative-refractive-index transmission-line metamaterials," in Negative-Refraction Metamaterials: Fundamental Principles and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley-IEEE, 2005), pp. 1-52.

[CrossRef]

R. Simons, Coplanar Waveguide Circuits, Components, and Systems (Wiley, 2001).

[CrossRef]