Abstract

We develop an approach to use nanostructured plasmonic materials as a nonmagnetic negative-refractive-index system at optical and near-infrared frequencies. In contrast to conventional negative-refraction materials, our design does not require periodicity and thus is highly tolerant to fabrication defects. Moreover, since the proposed materials are intrinsically nonmagnetic, their performance is not limited to the proximity of a resonance, so the resulting structure has relatively low loss. We develop the analytical description of the relevant electromagnetic phenomena and justify our analytic results via numerical solutions of Maxwell equations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57(6), 37-43 (2004).
    [CrossRef]
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  4. G. Shvets, "Photonic approach to making a materials with a negative index of refraction," Phys. Rev. B 67, 035109-1-8 (2003).
    [CrossRef]
  5. A. L. Pokrovsky and A. L. Efros, "Lens based upon the use of left-handed materials," Appl. Opt. 42, 5701-5705 (2003).
    [CrossRef] [PubMed]
  6. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Phys. Rev. B 69, 165112-1-7 (2004).
    [CrossRef]
  7. V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101(R)-1-4 (2005).
    [CrossRef]
  8. I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004).
    [CrossRef]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  10. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
    [CrossRef] [PubMed]
  11. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
    [CrossRef]
  12. R. Merlin, "Analytical solution to the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004).
    [CrossRef]
  13. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative refractive index materials," Phys. Rev. E 70, 035602(R)-1 4 (2004).
    [CrossRef]
  14. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401-1-4 (2005).
    [CrossRef]
  15. A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403-1-4 (2004).
    [CrossRef]
  16. G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902-1-4 (2004).
    [CrossRef]
  17. G. Shvets and Y. A. Urzhumov, "Electric and magnetic properties of subwavelength plasmonic crystals," J. Opt. B 7, S23-S31 (2005).
  18. S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, "Nonlinear surface waves at the interfaces of left-handed electromagnetic media," Phys. Rev. E 72, 0366151-6 (2005).
    [CrossRef]
  19. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  20. C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003).
    [CrossRef]
  21. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
    [CrossRef] [PubMed]
  22. S. Foteinopoulou, E. N. Economou, and C. M. Souloulis, "Refraction in a media with negative refractive index," Phys. Rev. Lett. 90, 107402-1-4 (2003).
    [CrossRef]
  23. Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, "Experimental demonstration of negative refraction imaging in both amplitude and phase," Opt. Express 13, 2007-2012 (2005).
    [CrossRef] [PubMed]
  24. I. I. Smolyaninov, J. Elliott, G. Wurtz, A. V. Zayats, and C. C. Davis, "Immersion microscopy based on photonic crystal materials," arXiv:cond-mat/0505351-1-23 (2005).
  25. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, 2nd ed. (Reed, 1984). Vol. 8.
  26. T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  27. V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).
  28. S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
    [CrossRef]
  29. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
    [CrossRef]
  30. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
    [CrossRef] [PubMed]
  31. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004).
    [CrossRef] [PubMed]
  32. It can be shown that for losses {epsilon,µ}′′/∣{epsilon,µ}′∣>0.3 even the near-field resolution of the NIM-based system is smaller than that of conventional near-field optics.
  33. V. A. Podolskiy, N. A. Kuhta, and G. Milton, "Optimizing the superlens: manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87, 231113 1-3 (2005).
    [CrossRef]
  34. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
    [CrossRef]
  35. A. L. Efros and A. L. Pokrovsky, "Dielectric photonic crystals as medium with negative electric permittivity and magnetic permeability," Solid State Commun. 129, 643-647 (2004).
    [CrossRef]
  36. V. A. Podolskiy, L. Alekseev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
    [CrossRef]
  37. The TEM wave formally corresponds to a TM wave with kappa=0. As seen from Eqs. , such a wave cannot propagate in NIM described here.
  38. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics (Reed, 1984), Vol. 10.
  39. See, e.g., J. Opt. A , Special Issue on Nanostructured Optical Meta-Materials 7, (2005).
  40. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, 1980).
  41. A. Alú and N. Engheta, "An overview of salient properties of planar guided-wave structures with double-negative (DNG) and single-negative (SNG) layers," in Negative Refraction Metamaterials: Fundamental Properties and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley, 2005).
  42. A. A. Govyadinov and V. A. Podolskiy, "Using photonic crystals to build optical funnels," Phys. Rev. Lett., submitted for publication.
  43. This particular realization of layered NIM structure for IR frequencies was earlier proposed in Ref. .
  44. O. Levy and D. Stroud, "Maxwell-Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
    [CrossRef]
  45. A. Lakhtakia, B. Michel, and W. S. Weiglhofer, "The role of anisotropy in the Maxwell-Garnett and Bruggeman formalisms for uniaxial particulate composite media," J. Phys. D 30, 230-240 (1997).
    [CrossRef]
  46. V. A. Podolskiy and E. E. Narimanov, "Nanoplasmonic approach to strongly anisotropic optical materials," in Conference on Lasers and Electro-optics/Quantum Electronics Conference/Photonics Applications Systems Technologies, OSA Trends in Optics and Photonics Series Optical Society of America (2005), paper JThC3.
    [PubMed]
  47. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  48. G. Shvets, A. K. Sarychev, and V. M. Shalaev, "Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits," Proc. SPIE 5218, 156-165 (2003).
    [CrossRef]
  49. A. L. Pokrovsky and A. L. Efros, "Nonlocal electrodynamics of two dimensional wire mesh photonic crystals," Phys. Rev. B 65, 04510-1-8 (2002).
    [CrossRef]
  50. Similar to any nanostructured composite material, the dielectric constant of nanocylinder array may be influenced by the spatial dispersion. We defer the detailed study of these effects to our later work.
  51. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A, Pure Appl. Opt. 7, S32-S37 (2005).
    [CrossRef]

2005

V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101(R)-1-4 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401-1-4 (2005).
[CrossRef]

G. Shvets and Y. A. Urzhumov, "Electric and magnetic properties of subwavelength plasmonic crystals," J. Opt. B 7, S23-S31 (2005).

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, "Nonlinear surface waves at the interfaces of left-handed electromagnetic media," Phys. Rev. E 72, 0366151-6 (2005).
[CrossRef]

Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, "Experimental demonstration of negative refraction imaging in both amplitude and phase," Opt. Express 13, 2007-2012 (2005).
[CrossRef] [PubMed]

V. A. Podolskiy, L. Alekseev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
[CrossRef]

See, e.g., J. Opt. A , Special Issue on Nanostructured Optical Meta-Materials 7, (2005).

V. A. Podolskiy, N. A. Kuhta, and G. Milton, "Optimizing the superlens: manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87, 231113 1-3 (2005).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A, Pure Appl. Opt. 7, S32-S37 (2005).
[CrossRef]

2004

A. L. Efros and A. L. Pokrovsky, "Dielectric photonic crystals as medium with negative electric permittivity and magnetic permeability," Solid State Commun. 129, 643-647 (2004).
[CrossRef]

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403-1-4 (2004).
[CrossRef]

G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902-1-4 (2004).
[CrossRef]

R. Merlin, "Analytical solution to the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004).
[CrossRef]

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative refractive index materials," Phys. Rev. E 70, 035602(R)-1 4 (2004).
[CrossRef]

I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004).
[CrossRef]

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Phys. Rev. B 69, 165112-1-7 (2004).
[CrossRef]

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57(6), 37-43 (2004).
[CrossRef]

2003

G. Shvets, "Photonic approach to making a materials with a negative index of refraction," Phys. Rev. B 67, 035109-1-8 (2003).
[CrossRef]

A. L. Pokrovsky and A. L. Efros, "Lens based upon the use of left-handed materials," Appl. Opt. 42, 5701-5705 (2003).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
[CrossRef] [PubMed]

C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003).
[CrossRef]

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

S. Foteinopoulou, E. N. Economou, and C. M. Souloulis, "Refraction in a media with negative refractive index," Phys. Rev. Lett. 90, 107402-1-4 (2003).
[CrossRef]

G. Shvets, A. K. Sarychev, and V. M. Shalaev, "Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits," Proc. SPIE 5218, 156-165 (2003).
[CrossRef]

2002

A. L. Pokrovsky and A. L. Efros, "Nonlocal electrodynamics of two dimensional wire mesh photonic crystals," Phys. Rev. B 65, 04510-1-8 (2002).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

2000

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1997

O. Levy and D. Stroud, "Maxwell-Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
[CrossRef]

A. Lakhtakia, B. Michel, and W. S. Weiglhofer, "The role of anisotropy in the Maxwell-Garnett and Bruggeman formalisms for uniaxial particulate composite media," J. Phys. D 30, 230-240 (1997).
[CrossRef]

1996

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1968

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Phys. Rev. B 69, 165112-1-7 (2004).
[CrossRef]

Alekseev, L.

V. A. Podolskiy, L. Alekseev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
[CrossRef]

Alú, A.

A. Alú and N. Engheta, "An overview of salient properties of planar guided-wave structures with double-negative (DNG) and single-negative (SNG) layers," in Negative Refraction Metamaterials: Fundamental Properties and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley, 2005).

Basov, D. N.

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Baughman, R. H.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Phys. Rev. B 69, 165112-1-7 (2004).
[CrossRef]

Boardman, A. D.

I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004).
[CrossRef]

Brekhovskikh, L. M.

L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, 1980).

Cai, W.

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).

Chettiar, U.

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).

Darmanyan, S. A.

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, "Nonlinear surface waves at the interfaces of left-handed electromagnetic media," Phys. Rev. E 72, 0366151-6 (2005).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401-1-4 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliott, G. Wurtz, A. V. Zayats, and C. C. Davis, "Immersion microscopy based on photonic crystal materials," arXiv:cond-mat/0505351-1-23 (2005).

Drachev, V. P.

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).

Economou, E. N.

S. Foteinopoulou, E. N. Economou, and C. M. Souloulis, "Refraction in a media with negative refractive index," Phys. Rev. Lett. 90, 107402-1-4 (2003).
[CrossRef]

Efros, A. L.

A. L. Efros and A. L. Pokrovsky, "Dielectric photonic crystals as medium with negative electric permittivity and magnetic permeability," Solid State Commun. 129, 643-647 (2004).
[CrossRef]

A. L. Pokrovsky and A. L. Efros, "Lens based upon the use of left-handed materials," Appl. Opt. 42, 5701-5705 (2003).
[CrossRef] [PubMed]

A. L. Pokrovsky and A. L. Efros, "Nonlocal electrodynamics of two dimensional wire mesh photonic crystals," Phys. Rev. B 65, 04510-1-8 (2002).
[CrossRef]

Egan, P.

I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004).
[CrossRef]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403-1-4 (2004).
[CrossRef]

Elliott, J.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401-1-4 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliott, G. Wurtz, A. V. Zayats, and C. C. Davis, "Immersion microscopy based on photonic crystal materials," arXiv:cond-mat/0505351-1-23 (2005).

Engheta, N.

A. Alú and N. Engheta, "An overview of salient properties of planar guided-wave structures with double-negative (DNG) and single-negative (SNG) layers," in Negative Refraction Metamaterials: Fundamental Properties and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley, 2005).

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Foteinopoulou, S.

S. Foteinopoulou, E. N. Economou, and C. M. Souloulis, "Refraction in a media with negative refractive index," Phys. Rev. Lett. 90, 107402-1-4 (2003).
[CrossRef]

Govyadinov, A. A.

A. A. Govyadinov and V. A. Podolskiy, "Using photonic crystals to build optical funnels," Phys. Rev. Lett., submitted for publication.

Grbic, A.

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403-1-4 (2004).
[CrossRef]

Greegor, R.

C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Kildishev, A. V.

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).

Kivshar, Y. S.

I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004).
[CrossRef]

Koltenbah, B. E. C.

C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003).
[CrossRef]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004).
[CrossRef] [PubMed]

Kuhta, N. A.

V. A. Podolskiy, N. A. Kuhta, and G. Milton, "Optimizing the superlens: manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87, 231113 1-3 (2005).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, B. Michel, and W. S. Weiglhofer, "The role of anisotropy in the Maxwell-Garnett and Bruggeman formalisms for uniaxial particulate composite media," J. Phys. D 30, 230-240 (1997).
[CrossRef]

Landau, L. D.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, 2nd ed. (Reed, 1984). Vol. 8.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Levy, O.

O. Levy and D. Stroud, "Maxwell-Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
[CrossRef]

Li, K.

C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003).
[CrossRef]

Lifshitz, E. M.

E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics (Reed, 1984), Vol. 10.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, 2nd ed. (Reed, 1984). Vol. 8.

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004).
[CrossRef] [PubMed]

Lu, W. T.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Lu, Z.

McPeake, D.

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

Merlin, R.

R. Merlin, "Analytical solution to the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004).
[CrossRef]

Michel, B.

A. Lakhtakia, B. Michel, and W. S. Weiglhofer, "The role of anisotropy in the Maxwell-Garnett and Bruggeman formalisms for uniaxial particulate composite media," J. Phys. D 30, 230-240 (1997).
[CrossRef]

Milton, G.

V. A. Podolskiy, N. A. Kuhta, and G. Milton, "Optimizing the superlens: manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87, 231113 1-3 (2005).
[CrossRef]

Narimanov, E. E.

V. A. Podolskiy, L. Alekseev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A, Pure Appl. Opt. 7, S32-S37 (2005).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
[CrossRef] [PubMed]

V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101(R)-1-4 (2005).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Nanoplasmonic approach to strongly anisotropic optical materials," in Conference on Lasers and Electro-optics/Quantum Electronics Conference/Photonics Applications Systems Technologies, OSA Trends in Optics and Photonics Series Optical Society of America (2005), paper JThC3.
[PubMed]

Nelson, K. A.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative refractive index materials," Phys. Rev. E 70, 035602(R)-1 4 (2004).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Neviere, M.

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, "Nonlinear surface waves at the interfaces of left-handed electromagnetic media," Phys. Rev. E 72, 0366151-6 (2005).
[CrossRef]

Notomi, M.

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

O'Brien, S.

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

Padilla, W. J.

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Parazzoli, C.

C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003).
[CrossRef]

Parimi, P. V.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57(6), 37-43 (2004).
[CrossRef]

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Pitaevskii, L. P.

E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics (Reed, 1984), Vol. 10.

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, 2nd ed. (Reed, 1984). Vol. 8.

Podolskiy, V. A.

V. A. Podolskiy, L. Alekseev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
[CrossRef]

V. A. Podolskiy, N. A. Kuhta, and G. Milton, "Optimizing the superlens: manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87, 231113 1-3 (2005).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A, Pure Appl. Opt. 7, S32-S37 (2005).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101(R)-1-4 (2005).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Nanoplasmonic approach to strongly anisotropic optical materials," in Conference on Lasers and Electro-optics/Quantum Electronics Conference/Photonics Applications Systems Technologies, OSA Trends in Optics and Photonics Series Optical Society of America (2005), paper JThC3.
[PubMed]

A. A. Govyadinov and V. A. Podolskiy, "Using photonic crystals to build optical funnels," Phys. Rev. Lett., submitted for publication.

Pokrovsky, A. L.

A. L. Efros and A. L. Pokrovsky, "Dielectric photonic crystals as medium with negative electric permittivity and magnetic permeability," Solid State Commun. 129, 643-647 (2004).
[CrossRef]

A. L. Pokrovsky and A. L. Efros, "Lens based upon the use of left-handed materials," Appl. Opt. 42, 5701-5705 (2003).
[CrossRef] [PubMed]

A. L. Pokrovsky and A. L. Efros, "Nonlocal electrodynamics of two dimensional wire mesh photonic crystals," Phys. Rev. B 65, 04510-1-8 (2002).
[CrossRef]

Prather, D. W.

Ramakrishna, S. A.

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Sarychev, A. K.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A, Pure Appl. Opt. 7, S32-S37 (2005).
[CrossRef]

G. Shvets, A. K. Sarychev, and V. M. Shalaev, "Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits," Proc. SPIE 5218, 156-165 (2003).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).

Schuetz, C. A.

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Shadrivov, I. V.

I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004).
[CrossRef]

Shalaev, V. M.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A, Pure Appl. Opt. 7, S32-S37 (2005).
[CrossRef]

G. Shvets, A. K. Sarychev, and V. M. Shalaev, "Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits," Proc. SPIE 5218, 156-165 (2003).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).

Shen, Y. R.

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Phys. Rev. B 69, 165112-1-7 (2004).
[CrossRef]

Shi, S.

Shultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Shvets, G.

G. Shvets and Y. A. Urzhumov, "Electric and magnetic properties of subwavelength plasmonic crystals," J. Opt. B 7, S23-S31 (2005).

G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902-1-4 (2004).
[CrossRef]

G. Shvets, "Photonic approach to making a materials with a negative index of refraction," Phys. Rev. B 67, 035109-1-8 (2003).
[CrossRef]

G. Shvets, A. K. Sarychev, and V. M. Shalaev, "Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits," Proc. SPIE 5218, 156-165 (2003).
[CrossRef]

Smith, D. R.

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57(6), 37-43 (2004).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401-1-4 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliott, G. Wurtz, A. V. Zayats, and C. C. Davis, "Immersion microscopy based on photonic crystal materials," arXiv:cond-mat/0505351-1-23 (2005).

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004).
[CrossRef] [PubMed]

Souloulis, C. M.

S. Foteinopoulou, E. N. Economou, and C. M. Souloulis, "Refraction in a media with negative refractive index," Phys. Rev. Lett. 90, 107402-1-4 (2003).
[CrossRef]

Sridhar, S.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Stroud, D.

O. Levy and D. Stroud, "Maxwell-Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
[CrossRef]

Sukhorukov, A. A.

I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Tanielian, M.

C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003).
[CrossRef]

Urzhumov, Y. A.

G. Shvets and Y. A. Urzhumov, "Electric and magnetic properties of subwavelength plasmonic crystals," J. Opt. B 7, S23-S31 (2005).

G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902-1-4 (2004).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Vodo, P.

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Ward, D. W.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative refractive index materials," Phys. Rev. E 70, 035602(R)-1 4 (2004).
[CrossRef]

Webb, K. J.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative refractive index materials," Phys. Rev. E 70, 035602(R)-1 4 (2004).
[CrossRef]

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004).
[CrossRef] [PubMed]

Weiglhofer, W. S.

A. Lakhtakia, B. Michel, and W. S. Weiglhofer, "The role of anisotropy in the Maxwell-Garnett and Bruggeman formalisms for uniaxial particulate composite media," J. Phys. D 30, 230-240 (1997).
[CrossRef]

Wurtz, G.

I. I. Smolyaninov, J. Elliott, G. Wurtz, A. V. Zayats, and C. C. Davis, "Immersion microscopy based on photonic crystal materials," arXiv:cond-mat/0505351-1-23 (2005).

Yang, M.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative refractive index materials," Phys. Rev. E 70, 035602(R)-1 4 (2004).
[CrossRef]

Yen, T. Y.

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Yuan, H.-K.

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).

Zakhidov, A. A.

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, "Nonlinear surface waves at the interfaces of left-handed electromagnetic media," Phys. Rev. E 72, 0366151-6 (2005).
[CrossRef]

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Phys. Rev. B 69, 165112-1-7 (2004).
[CrossRef]

Zayats, A. V.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401-1-4 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliott, G. Wurtz, A. V. Zayats, and C. C. Davis, "Immersion microscopy based on photonic crystal materials," arXiv:cond-mat/0505351-1-23 (2005).

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Zharov, A. A.

I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004).
[CrossRef]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations of subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

R. Merlin, "Analytical solution to the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004).
[CrossRef]

V. A. Podolskiy, N. A. Kuhta, and G. Milton, "Optimizing the superlens: manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87, 231113 1-3 (2005).
[CrossRef]

J. Mod. Opt.

V. A. Podolskiy, L. Alekseev, and E. E. Narimanov, "Strongly anisotropic media: the THz perspectives of left-handed materials," J. Mod. Opt. 52, 2343-2349 (2005).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[CrossRef]

J. Opt. A

See, e.g., J. Opt. A , Special Issue on Nanostructured Optical Meta-Materials 7, (2005).

J. Opt. A, Pure Appl. Opt.

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A, Pure Appl. Opt. 7, S32-S37 (2005).
[CrossRef]

J. Opt. B

G. Shvets and Y. A. Urzhumov, "Electric and magnetic properties of subwavelength plasmonic crystals," J. Opt. B 7, S23-S31 (2005).

J. Phys. D

A. Lakhtakia, B. Michel, and W. S. Weiglhofer, "The role of anisotropy in the Maxwell-Garnett and Bruggeman formalisms for uniaxial particulate composite media," J. Phys. D 30, 230-240 (1997).
[CrossRef]

Nature

P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, Phys. Rev. B 69, 241101 (2004).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Phys. Rev. B 69, 165112-1-7 (2004).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101(R)-1-4 (2005).
[CrossRef]

G. Shvets, "Photonic approach to making a materials with a negative index of refraction," Phys. Rev. B 67, 035109-1-8 (2003).
[CrossRef]

O. Levy and D. Stroud, "Maxwell-Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers," Phys. Rev. B 56, 8035-8046 (1997).
[CrossRef]

A. L. Pokrovsky and A. L. Efros, "Nonlocal electrodynamics of two dimensional wire mesh photonic crystals," Phys. Rev. B 65, 04510-1-8 (2002).
[CrossRef]

Phys. Rev. E

I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617-1-9 (2004).
[CrossRef]

S. A. Darmanyan, M. Neviere, and A. A. Zakhidov, "Nonlinear surface waves at the interfaces of left-handed electromagnetic media," Phys. Rev. E 72, 0366151-6 (2005).
[CrossRef]

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, "Metrics for negative refractive index materials," Phys. Rev. E 70, 035602(R)-1 4 (2004).
[CrossRef]

Phys. Rev. Lett.

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401-1-4 (2005).
[CrossRef]

A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403-1-4 (2004).
[CrossRef]

G. Shvets and Y. A. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902-1-4 (2004).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Shultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

C. Parazzoli, R. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-1-4 (2003).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

S. Foteinopoulou, E. N. Economou, and C. M. Souloulis, "Refraction in a media with negative refractive index," Phys. Rev. Lett. 90, 107402-1-4 (2003).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Phys. Today

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57(6), 37-43 (2004).
[CrossRef]

Proc. SPIE

G. Shvets, A. K. Sarychev, and V. M. Shalaev, "Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits," Proc. SPIE 5218, 156-165 (2003).
[CrossRef]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. Y. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "THz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353(2004).
[CrossRef] [PubMed]

Solid State Commun.

A. L. Efros and A. L. Pokrovsky, "Dielectric photonic crystals as medium with negative electric permittivity and magnetic permeability," Solid State Commun. 129, 643-647 (2004).
[CrossRef]

Sov. Phys. Usp.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other

The TEM wave formally corresponds to a TM wave with kappa=0. As seen from Eqs. , such a wave cannot propagate in NIM described here.

E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics (Reed, 1984), Vol. 10.

It can be shown that for losses {epsilon,µ}′′/∣{epsilon,µ}′∣>0.3 even the near-field resolution of the NIM-based system is smaller than that of conventional near-field optics.

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," arXiv:physics/050491-1-17 (2005).

I. I. Smolyaninov, J. Elliott, G. Wurtz, A. V. Zayats, and C. C. Davis, "Immersion microscopy based on photonic crystal materials," arXiv:cond-mat/0505351-1-23 (2005).

L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, 2nd ed. (Reed, 1984). Vol. 8.

V. A. Podolskiy and E. E. Narimanov, "Nanoplasmonic approach to strongly anisotropic optical materials," in Conference on Lasers and Electro-optics/Quantum Electronics Conference/Photonics Applications Systems Technologies, OSA Trends in Optics and Photonics Series Optical Society of America (2005), paper JThC3.
[PubMed]

L. M. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, 1980).

A. Alú and N. Engheta, "An overview of salient properties of planar guided-wave structures with double-negative (DNG) and single-negative (SNG) layers," in Negative Refraction Metamaterials: Fundamental Properties and Applications, G.V.Eleftheriades and K.G.Balmain, eds. (Wiley, 2005).

A. A. Govyadinov and V. A. Podolskiy, "Using photonic crystals to build optical funnels," Phys. Rev. Lett., submitted for publication.

This particular realization of layered NIM structure for IR frequencies was earlier proposed in Ref. .

Similar to any nanostructured composite material, the dielectric constant of nanocylinder array may be influenced by the spatial dispersion. We defer the detailed study of these effects to our later work.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic configuration of nonmagnetic negative-refraction system.

Fig. 2
Fig. 2

Cross-section of the field in the planar waveguide with hollow d = 0.5 μ m thick core. Dashed curve, the case of ϵ m = (perfect metal boundary); solid curve, Ag boundaries for λ = 0.85 μ m ; dots, κ calculated using Eq. (9). (a) TM and (b) TE modes are shown.

Fig. 3
Fig. 3

Schematics of the layered structure described in the text.

Fig. 4
Fig. 4

(a), (c), (e) Real part and (b), (d), (f) absorption of effective ϵ (solid curve) and ϵ (dashed curves) for layered systems. (a) and (b) Ag-Si stack, N pl = 0.6 ; (c) and (d) Ag - Si O 2 stack, N pl = 0.1 (note the extremely small absorption of this system); (e) and (f) SiC–Si stack, N pl = 0.1 .

Fig. 5
Fig. 5

(a) Schematics of the wired structure described in the text. (b)–(c) comparison of ϵ , calculated using Eq. (14) (solid curve) and derived from numerical solution of Maxwell equations, as described in the text (dots); dependence of ϵ on dielectric constant of the inclusions for N pl (b) and on concentration for ϵ pl = 10 (c) is shown.

Fig. 6
Fig. 6

(a) and (c) Real part and (b) and (d) absorption of effective ϵ (solid curves) and ϵ (dashed curves) for wired systems. (a) and (b) Ag - Si O 2 structure (note the relatively small absorption for the NIM regime), N pl = 0.05 ; (c) and (d) SiC-Si structure, N pl = 0.1 .

Fig. 7
Fig. 7

Imaging by a planar NIM-based lens. n > 0 region: Si-filled planar waveguide, d = 0.3 μ m ; NIM region: planar waveguide with core material described in Fig. 6a, 6b. (a) The intensity distribution in the system with absorption losses is neglected; the LHM region is between z = 2.5 μ m and z = 7.5 μ m . The focal plane corresponds to z = 10 μ m (white dashed line); the slit size is w = 0.75 μ m . (b) Dashed line, emitted radiation; solid line, focal-plane intensity distribution in system described in (a); dash-dotted line, same as solid line, but in the case of real (absorbing) NIM. (c) same as (b), but w = 0.3 μ m (corresponding to far-field resolution limit of the system).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

k y 2 + k z 2 = ϵ ν k 2 ,
ν = 1 κ 2 ϵ k 2 ,
v p = n k ,
U E ( TM ) = U H ( TM ) = 1 16 π ϵ 2 k 2 κ 2 A 0 2 ,
U ( TM ) = U E ( TM ) + U H ( TM ) = ϵ 2 k 2 8 π κ 2 A 0 2 ,
U E ( TE ) = U H ( TE ) = ϵ 16 π A 0 2 ,
U ( TE ) = U E ( TE ) + U H ( TE ) = ϵ 8 π A 0 2 ,
S z ( TE , TM ) = c k z ϵ ( , ) k U ( TE , TM ) .
ϵ m ( ω ) = ϵ Ω pl 2 ω ( ω + i τ ) ,
tan [ κ ( TM ) d 2 ] = ϵ m κ ( TM ) [ k 2 ϵ 2 ( ϵ ϵ m ) κ ( TM ) 2 ϵ ϵ ] 1 2 ,
tan [ κ ( TE ) d 2 ] = [ k 2 ( ϵ ϵ m ) κ ( TE ) 2 ] 1 2 κ ( TE ) .
κ ( TM ) κ 0 ( 1 2 k ϵ κ 0 2 d ϵ m ) ,
κ ( TE ) κ 0 ( 1 2 k d ϵ m ) .
n ( TM ) ± ϵ ν 0 ( 1 + 2 k d ν 0 ϵ m ) ,
n ( TE ) ϵ ν 0 ( 1 + 2 κ 0 2 k 3 d ϵ ν 0 ϵ m ) ,
n ( TM ) 1 k d ( ϵ ν 0 ϵ m ) 1 2 ϵ m ϵ m ,
n ( TE ) κ 0 2 k 3 d ( ϵ ν 0 ϵ m ) 1 2 ϵ m ϵ m .
D ( r ) α = ϵ ( r ) α , β E ( r ) β = ϵ eff α , β E ( r ) β ,
ϵ = ϵ eff y , z = N pl ϵ pl + ( 1 N pl ) ϵ d ,
ϵ = ϵ eff x = ϵ pl ϵ d ( 1 N pl ) ϵ pl + N pl ϵ d .
ϵ = ϵ eff y , z = N pl ϵ pl E in + ( 1 N p l ) ϵ d E 0 N pl E in + ( 1 N p l ) E 0 ,
ϵ = ϵ eff x = N p l ϵ p l + ( 1 N p l ) ϵ d ,

Metrics