Abstract

An experimental comparison of the performance of single- and double-layer planar lens lithography has been carried out. A direct comparison is made with a single 50nm silver lens and a double silver lens with two 30nm layers. Sub-diffraction-limited features have been imaged in both cases, with dense grating periods down to 145 and 170nm for the single- and double-layered stacks, respectively. For the same total thickness of silver, the resolution limit is qualitatively better for a double-layer stack. However, pattern fidelity is reduced in the double-layer experiments, owing to increased surface roughness. Finite-difference time-domain simulations are also presented to back up the experimental results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
    [CrossRef]
  3. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  4. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
    [CrossRef]
  5. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
    [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  7. R. J. Blaikie and S. J. McNab, "Simulation study of 'perfect lenses' for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
    [CrossRef]
  8. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).
  9. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
    [CrossRef]
  10. J. G. Goodberlet and H. Kavak, "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
    [CrossRef]
  11. G. O. Reynolds, G. B. Parrent, J. B. DeVelis, and B. J. Thompson, "Resolution in terms of the impulse response," in The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE; American Institute of Physics, 1989), p. 38.
    [CrossRef]
  12. R. J. Blaikie and D. O. S. Melville, "Imaging through planar silver lenses in the optical near field," J. Opt. A 7, S176-S183 (2005).
    [CrossRef]

2005 (4)

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

R. J. Blaikie and D. O. S. Melville, "Imaging through planar silver lenses in the optical near field," J. Opt. A 7, S176-S183 (2005).
[CrossRef]

2004 (1)

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

2003 (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

2002 (2)

R. J. Blaikie and S. J. McNab, "Simulation study of 'perfect lenses' for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
[CrossRef]

J. G. Goodberlet and H. Kavak, "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999 (1)

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Blaikie, R. J.

D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

R. J. Blaikie and D. O. S. Melville, "Imaging through planar silver lenses in the optical near field," J. Opt. A 7, S176-S183 (2005).
[CrossRef]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

R. J. Blaikie and S. J. McNab, "Simulation study of 'perfect lenses' for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

DeVelis, J. B.

G. O. Reynolds, G. B. Parrent, J. B. DeVelis, and B. J. Thompson, "Resolution in terms of the impulse response," in The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE; American Institute of Physics, 1989), p. 38.
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Goodberlet, J. G.

J. G. Goodberlet and H. Kavak, "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
[CrossRef]

Kavak, H.

J. G. Goodberlet and H. Kavak, "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

McNab, S. J.

R. J. Blaikie and S. J. McNab, "Simulation study of 'perfect lenses' for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Melville, D. O. S.

D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef] [PubMed]

R. J. Blaikie and D. O. S. Melville, "Imaging through planar silver lenses in the optical near field," J. Opt. A 7, S176-S183 (2005).
[CrossRef]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

Parrent, G. B.

G. O. Reynolds, G. B. Parrent, J. B. DeVelis, and B. J. Thompson, "Resolution in terms of the impulse response," in The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE; American Institute of Physics, 1989), p. 38.
[CrossRef]

Pendry, J. B.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Reynolds, G. O.

G. O. Reynolds, G. B. Parrent, J. B. DeVelis, and B. J. Thompson, "Resolution in terms of the impulse response," in The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE; American Institute of Physics, 1989), p. 38.
[CrossRef]

Stewart, W. J.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Thompson, B. J.

G. O. Reynolds, G. B. Parrent, J. B. DeVelis, and B. J. Thompson, "Resolution in terms of the impulse response," in The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE; American Institute of Physics, 1989), p. 38.
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Wiltshire, M. C. K.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

Wolf, C. R.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

J. G. Goodberlet and H. Kavak, "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).

J. Opt. A (1)

R. J. Blaikie and D. O. S. Melville, "Imaging through planar silver lenses in the optical near field," J. Opt. A 7, S176-S183 (2005).
[CrossRef]

Microelectron. Eng. (1)

R. J. Blaikie and S. J. McNab, "Simulation study of 'perfect lenses' for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other (1)

G. O. Reynolds, G. B. Parrent, J. B. DeVelis, and B. J. Thompson, "Resolution in terms of the impulse response," in The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE; American Institute of Physics, 1989), p. 38.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Experimental setup of single- and double-layer planar lens lithography. BARC, bottom antireflection coating.

Fig. 2
Fig. 2

(Color online) AFM scans of features imaged through a 25 50 10 PMMA Ag Si O 2 stack. Gratings with periods of 500 through 170 nm are shown, with the 200 and 170 nm features achieving sub-diffraction-limited resolution. All height scales are 50 nm .

Fig. 3
Fig. 3

(Color online) (a) AFM scan and (b) associated Fourier transform of an averaged line scan for 145 nm period features imaged through a 25 50 10 PMMA Ag Si O 2 stack. The height scale is 50 nm .

Fig. 4
Fig. 4

(Color online) Comparison of AFM scans for features imaged below a single-layer 25 50 10 PMMA Ag Si O 2 stack and a double-layer 15 30 30 30 10 PMMA Ag Si O 2 Ag Si O 2 stack. All height scales are 50 nm .

Fig. 5
Fig. 5

(Color online) AFM scans of features imaged through a 30 60 30 PMMA Ag Si O 2 stack. Periods from 1 μ m to 350 nm are shown. No dense grating features with periods below 350 nm were found. All height scales are 50 nm .

Fig. 6
Fig. 6

(Color online) AFM scans of features imaged through a double-layer 25 50 50 50 10 PMMA Ag Si O 2 Ag Si O 2 stack. Periods from 1 μ m down to 350 nm are shown. No dense grating features with periods below 350 nm were found. All height scales are 50 nm .

Fig. 7
Fig. 7

(Color online) Two-dimensional finite-difference time-domain simulations of (a) a proximity exposure, (b) a single-layer 25 50 10 PMMA Ag Si O 2 stack, and (c) a double-layer 15 30 30 30 10 PMMA Ag Si O 2 Ag Si O 2 stack. BARC, bottom antireflection coating.

Fig. 8
Fig. 8

(Color online) One-dimensional traces extracted from two-dimensional finite-difference time-domain simulations of double-layer ( 15 30 30 30 10 PMMA Ag Si O 2 Ag Si O 2 ) and single-layer ( 25 50 10 PMMA Ag Si O 2 ) lens stacks. A trace for a 85 nm proximity simulation is also provided for comparison. Traces are taken at a depth of 30 nm into the resist. The locations of the traces are indicated in by the dashed lines in Fig. 7.

Tables (2)

Tables Icon

Table 1 Process Parameter Table for Reactive Ion Etching of Tungsten and PMMA

Tables Icon

Table 2 Process Parameter Table for Thermal Evaporation of Silver and Silicon Dioxide

Metrics