Abstract

We study the diffraction of electromagnetic waves from subwavelength metallic circular apertures in the microwave spectrum. The theoretical and experimental demonstration of the near- and far-field electromagnetic distributions for subwavelength circular annular apertures and circular annular apertures surrounded by concentric periodic grooves are reported here. The metallic samples had a subwavelength hole with a diameter of 8 mm and had concentric grooves with a periodicity of 16 mm. We present the angular transmission distributions from circular annular apertures, and circular annular apertures surrounded by concentric periodic grooves. At the surface-mode resonance frequency the transmitted electromagnetic waves from the subwavelength circular annular aperture surrounded by concentric periodic grooves have a strong angular confinement with an angular divergence of ±3°. This represents a fourfold reduction when compared with the angular divergence of the beam transmitted from the subwavelength circular aperture.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163182 (1944).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  3. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  4. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
    [CrossRef]
  5. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  6. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
    [CrossRef]
  7. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, "Metallodielectric gratings with subwavelength slots: optical properties," Phys. Rev. B 68, 205103 (2003).
    [CrossRef]
  8. N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003).
    [CrossRef] [PubMed]
  9. A. G. Borisov, F. J. Garca de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
    [CrossRef]
  10. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, 159-164 (2005).
    [CrossRef]
  11. M. J. Lockyear, A. P. Hibbins, J R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, 152-158 (2005).
    [CrossRef]
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  13. Y. Teng, E. A. Stern, "Plasma radiation from metal grating surfaces," Phys. Rev. Lett. 19, 511-514 (1967).
    [CrossRef]
  14. T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
    [CrossRef]
  15. U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42-44, 393-398 (1992).
    [CrossRef]
  16. F. I. Baida, D. Van Labeke, and B. Guzial, "Enhanced confined light transmission by single subwavelength apertures in metallic films," Appl. Opt. 42, 6811-6815 (2003).
    [CrossRef] [PubMed]
  17. H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
    [CrossRef] [PubMed]

2005

A. G. Borisov, F. J. Garca de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, 159-164 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

2004

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

2003

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, "Metallodielectric gratings with subwavelength slots: optical properties," Phys. Rev. B 68, 205103 (2003).
[CrossRef]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003).
[CrossRef] [PubMed]

F. I. Baida, D. Van Labeke, and B. Guzial, "Enhanced confined light transmission by single subwavelength apertures in metallic films," Appl. Opt. 42, 6811-6815 (2003).
[CrossRef] [PubMed]

2002

T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

1992

U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42-44, 393-398 (1992).
[CrossRef]

1967

Y. Teng, E. A. Stern, "Plasma radiation from metal grating surfaces," Phys. Rev. Lett. 19, 511-514 (1967).
[CrossRef]

1944

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163182 (1944).
[CrossRef]

Aguirre, C. M.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, "Metallodielectric gratings with subwavelength slots: optical properties," Phys. Rev. B 68, 205103 (2003).
[CrossRef]

Akarca-Biyikli, S. S.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, 159-164 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

Baida, F. I.

Bethe, H. A.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163182 (1944).
[CrossRef]

Bonod, N.

Borisov, A. G.

A. G. Borisov, F. J. Garca de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

Bulu, I.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, 159-164 (2005).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

Caglayan, H.

de Abajo, F. J.

A. G. Borisov, F. J. Garca de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

Degiron, A.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Ebessen, T. W.

T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

Enoch, S.

Evgeny, P.

Fischer, U. C.

U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42-44, 393-398 (1992).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Guzial, B.

Halas, N. J.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, "Metallodielectric gratings with subwavelength slots: optical properties," Phys. Rev. B 68, 205103 (2003).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

Lee, A.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, "Metallodielectric gratings with subwavelength slots: optical properties," Phys. Rev. B 68, 205103 (2003).
[CrossRef]

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

Li, L.

Linke, R. A.

T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Moran, C. E.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, "Metallodielectric gratings with subwavelength slots: optical properties," Phys. Rev. B 68, 205103 (2003).
[CrossRef]

Nahata, A.

T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

Neviere, M.

Ozbay, E.

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, 159-164 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Sambles, J R.

M. J. Lockyear, A. P. Hibbins, J R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

Shabanov, S. V.

A. G. Borisov, F. J. Garca de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

Steele, J. M.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, "Metallodielectric gratings with subwavelength slots: optical properties," Phys. Rev. B 68, 205103 (2003).
[CrossRef]

Stern, E. A.

Y. Teng, E. A. Stern, "Plasma radiation from metal grating surfaces," Phys. Rev. Lett. 19, 511-514 (1967).
[CrossRef]

Teng, Y.

Y. Teng, E. A. Stern, "Plasma radiation from metal grating surfaces," Phys. Rev. Lett. 19, 511-514 (1967).
[CrossRef]

Thio, T.

T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

Van Labeke, D.

Zapletal, M.

U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42-44, 393-398 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett. 85, 1098-1100 (2004).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004).
[CrossRef]

J. Opt. A Pure Appl. Opt.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," J. Opt. A Pure Appl. Opt. 7, 159-164 (2005).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwavelength aperture surrounded by concentric grooves," J. Opt. A Pure Appl. Opt. 7, 152-158 (2005).
[CrossRef]

Nanotechnology

T. Thio, H. J. Lezec, T. W. Ebessen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002).
[CrossRef]

Opt. Express

Phys. Rev.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163182 (1944).
[CrossRef]

Phys. Rev. B

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, "Metallodielectric gratings with subwavelength slots: optical properties," Phys. Rev. B 68, 205103 (2003).
[CrossRef]

A. G. Borisov, F. J. Garca de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005).
[CrossRef]

Phys. Rev. Lett.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Y. Teng, E. A. Stern, "Plasma radiation from metal grating surfaces," Phys. Rev. Lett. 19, 511-514 (1967).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Ultramicroscopy

U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42-44, 393-398 (1992).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematics of the four metallic samples and a top view of Sample 2.

Fig. 2
Fig. 2

Experiment setup for transmission and angular distribution measurements.

Fig. 3
Fig. 3

Measured transmission results for (a) Samples 1 and 2 and (b) Samples 1 and 4.

Fig. 4
Fig. 4

(a) Calculated field on the output surface of Sample 2. (b) Measured and calculated field 4 mm away from the surface of Sample 2.

Fig. 5
Fig. 5

Normalized angular transmission distributions for (a) Sample 1 and (b) Sample 2 at resonance frequency (13 GHz).

Fig. 6
Fig. 6

Normalized angular transmission distributions for (a) Sample 3 and (b) Sample 4 at resonance frequency (13 GHz).

Fig. 7
Fig. 7

Comparison of the calculated far-field results for Samples 1 and 4.

Fig. 8
Fig. 8

Calculated (top) and measured (bottom) electric-field distribution from Sample 4 at the resonance frequency.

Metrics