Abstract

The modal cutoff properties in a germanium-doped solid-core photonic-crystal fiber Bragg grating (PCFBG) are investigated with the beam propagation method. The results show that the normalized frequency V of a PCFBG depends not only on the normalized pitch Λλ but also on the normalized hole size dΛ. In addition, the single-mode–multimode boundary profile of the PCFBG shifts to the low normalized hole-size side in contrast to that of the pure-silica solid-core photonic-crystal fiber (pure-solid PCF). Furthermore, besides the phase-matching condition and the electric field overlapping with the grating region, the inequality VPCF>π also should be fulfilled for the higher-order resonant modes to be excited in the PCFBG.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  3. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
    [CrossRef] [PubMed]
  4. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002).
    [PubMed]
  5. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  6. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000).
    [CrossRef]
  7. T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
    [CrossRef]
  8. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, "Strain and temperature characterization of photonic crystal fiber Bragg gratings," Opt. Lett. 20, 1785-1787 (2005).
    [CrossRef]
  9. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Opt. Lett. 28, 1879-1881 (2003).
    [CrossRef] [PubMed]
  10. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, "Modal cutoff in microstructured optical fibers," Opt. Lett. 27, 1684-1686 (2002).
    [CrossRef]
  11. M. D. Nielsen, N. A. Mortensen, J. R. Folkenberg, and A. Bjarklev, "Mode-field radius of photonic crystal fibers expressed by the V parameter," Opt. Lett. 28, 2309-2311 (2003).
    [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-273 (2005).
    [CrossRef] [PubMed]
  13. F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, "Single-mode regime of square-lattice photonic crystal fibers," J. Opt. Soc. Am. A 22, 1655-1661 (2005).
    [CrossRef]
  14. M. D. Felt and J. J. A. Fleck, "Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method," Appl. Opt. 19, 2240-2246 (1980).
    [CrossRef]
  15. D. Yevick and W. Bardyszewski, "Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis," Opt. Lett. 17, 329-330 (1992).
    [CrossRef] [PubMed]
  16. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
    [CrossRef]

2005 (4)

2003 (3)

2002 (2)

2001 (1)

2000 (2)

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000).
[CrossRef]

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

1997 (1)

1996 (1)

1992 (1)

1980 (1)

Atkin, D. M.

Bardyszewski, W.

Birks, T. A.

Bjarklev, A.

Bottacini, M.

Burani, N.

Burdge, G. L.

Canning, J.

Cucinotta, A.

de Sterke, C. M.

Dong, X.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Eggleton, B. J.

Felt, M. D.

Fleck, J. J. A.

Folkenberg, J. R.

Foroni, M.

Fuochi, M.

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Groothoff, N.

Hale, A.

Hansen, K. P.

Hasegawa, T.

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Kai, G.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Kerbage, C.

Knight, J. C.

Koshiba, M.

Kuhlmey, B. T.

Liu, J.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Liu, Y.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Lyytikainen, K.

Martelli, C.

McPhedran, R. C.

Mortensen, N. A.

Nielsen, M. D.

Poli, F.

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Rosa, L.

Russell, P. St. J.

Saitoh, K.

Sasaoka, E.

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Selleri, S.

Sun, T.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Wang, C.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Wang, Z.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Westbrook, P. S.

White, C. A.

Windeler, R. S.

Yevick, D.

Yuan, S.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Zhang, C.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Zhang, W.

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Microwave Opt. Technol. Lett. (1)

T. Sun, G. Kai, Z. Wang, C. Wang, C. Zhang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Multi-wavelength erbium-doped fiber laser based on a microstructure fiber Bragg grating," Microwave Opt. Technol. Lett. 20, 162-164 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transverse section scheme of the PCFBG.

Fig. 2
Fig. 2

V PCF as a function of the normalized pitch Λ λ .

Fig. 3
Fig. 3

Single-mode–multimode boundary profiles.

Fig. 4
Fig. 4

V PCF as a function of the normalized hole size d Λ .

Fig. 5
Fig. 5

Mode that can be transmitted in the PCFBG for d Λ = 0.3 , Λ λ = 12.9 , and V PCF = 2.51 .

Fig. 6
Fig. 6

Mode that can be transmitted in the PCFBG for d Λ = 0.9 , Λ λ = 12.9 , and V PCF = 14.03 .

Fig. 7
Fig. 7

PCFBG reflection spectrum for d Λ = 0.3 , Λ λ = 12.9 , and V PCF = 2.51 .

Fig. 8
Fig. 8

PCFBG reflection spectrum for d Λ = 0.9 , Λ λ = 12.9 , and V PCF = 14.03 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V = ( 2 π ρ λ ) ( n co 2 n cl 2 ) 1 2 ,
V PCF = ( 2 π Λ λ ) ( n co 2 n cl 2 ) 1 2 ,
V PCF < π .
λ * Λ = α ( d Λ d * Λ ) β ,
λ B = 2 n co P FBG ,
λ FBG , i = ( n co + n clad , i ) P FBG ,
α i = ( λ π ) K i = Ω E i ( x , y ) Δ n ( x , y ) E core ( x , y ) d x d y ,

Metrics