Abstract

The effects of Tm3+ ions on the intensity and lifetime of 1.3μm fluorescence from Dy3+ ions in Ge25Ga5Sb5Se65 glass were investigated, and the energy-transfer mechanisms were discussed. Tm3+ codoping in Dy3+-doped selenide glasses significantly enhanced the 1.3μm fluorescence intensity and remarkably increased corresponding lifetime through an efficient energy transfer from Tm3+:H53 to Dy3+:F1126H926. The donor (Tm3+) excitation was transferred to the acceptor (Dy3+) by direct electric dipole–dipole interaction or migrated among donor ions by diffusion-limited regime until it came into the vicinity of an acceptor ion, where direct interaction and transfer occurred.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Emori, S. Kado, and S. Namiki, "Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high-power laser diodes," Opt. Fiber Technol. 8, 107-122 (2002).
    [CrossRef]
  2. Y. B. Shin, J. Heo, and H. S. Kim, "Enhancement of the 1.31-µm emission properties of Dy3+-doped Ge-Ga-S glasses with the addition of alkali halides," J. Mater. Res. 16, 1318-1324 (2001).
    [CrossRef]
  3. R. C. Schimmel, A. J. Faber, H. de Waardt, R. G. C. Beerkens, and G. D. Khoe, "Development of germanium gallium sulphide glass fibres for the 1.31µm praseodymium-doped fibre amplifier," J. Non-Cryst. Solids 284, 188-192 (2001).
    [CrossRef]
  4. B. G. Aitken, M. J. Dejneka, and M. L. Powley, "Tm-doped alkaline earth aluminate glass for optical amplification at 1460 nm," J. Non-Cryst. Solids 349, 115-119 (2004).
    [CrossRef]
  5. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., "Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3-µm fiber-optical amplifier applications," Opt. Lett. 19, 904-906 (1994).
    [CrossRef] [PubMed]
  6. B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, "Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR," J. Non-Cryst. Solids 256&257, 253-259 (1999).
    [CrossRef]
  7. Y. B. Shin, C. K. Yang, and J. Heo, "Optimization of Dy3+-doped Ge-Ga-As-S-CsBr glass composition and its 1.31µm emission properties," J. Non-Cryst. Solids 298, 153-159 (2002).
    [CrossRef]
  8. Z. Yang, W. Chen, and L. Luo, "Dy3+-doped selenide glasses for 1.3µm optical fiber amplifiers," J. Mater. Res. 20, 2597-2602 (2005).
    [CrossRef]
  9. P. Nemec, B. Frumarová, M. Frumar, and J. Oswald, "Optical properties of low-phonon energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses," J. Phys. Chem. Solids 61, 1583-1589 (2000).
    [CrossRef]
  10. W. T. Carnall, P. R. Fields, and K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
    [CrossRef]
  11. K. Kadono, T. Yazawa, M. Shojiya, and Y. Kawamoto, "Judd-Ofelt analysis and luminescence property of Tm3+ in Ga2S3-GeS2-La2S3 glasses," J. Non-Cryst. Solids 274, 75-80 (2000).
    [CrossRef]
  12. Z. Yang, W. Chen, and L. Luo, "Dy3+-doped Ge-Ga-Sb-Se glasses for 1.3µm optical fiber amplifiers," J. Non-Cryst. Solids 351, 2513-2518 (2005).
  13. M. Inokuti and F. Hirayama, "Influence of energy transfer by the exchange mechanism on donor luminescence," J. Chem. Phys. 43, 1978-1989 (1965).
    [CrossRef]
  14. C. Brecher and L. A. Riseberg, "Laser-induced fluorescence line narrowing in Eu glass: a spectroscopic analysis of coordination structure," Phys. Rev. B 13, 81-93 (1976).
    [CrossRef]
  15. J. T. Fournier and R. H. Bartram, "Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass," J. Phys. Chem. Solids 31, 2615-2624 (1970).
    [CrossRef]
  16. D. H. Cho, Y. G. Choi, and K. H. Kim, "Energy transfer from Tm3+:F43 to Dy3+:H11/26 in oxyfluoride tellurite glasses," Chem. Phys. Lett. 322, 263-266 (2000).
    [CrossRef]
  17. D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
    [CrossRef]
  18. D. L. Dexter and H. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
    [CrossRef]
  19. K. B. Eisenthal and S. Siegel, "Influence of resonance transfer on luminescence decay," J. Chem. Phys. 41, 652-655 (1964).
    [CrossRef]
  20. G. F. Imbusch, "Energy transfer in ruby," Phys. Rev. 153, 326-337 (1967).
    [CrossRef]
  21. M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
    [CrossRef]
  22. M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
    [CrossRef]
  23. R. G. Bennett, "Radiationless intermolecular energy transfer," J. Chem. Phys. 41, 3037-3040 (1964).
    [CrossRef]
  24. H. Nishimura, M. Tanaka, and M. Tomura, "Energy transfer by resonance between TI+ ions in KI single crystals," J. Phys. Soc. Jpn. 28, 128-134 (1970).
    [CrossRef]
  25. A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+,Ho3+ doubly doped indium-based fluoride glasses." Phys. Rev. B 41, 5364-5371 (1990).
    [CrossRef]
  26. W. B. Gandrud and H. W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
    [CrossRef]

2005 (2)

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped selenide glasses for 1.3µm optical fiber amplifiers," J. Mater. Res. 20, 2597-2602 (2005).
[CrossRef]

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped Ge-Ga-Sb-Se glasses for 1.3µm optical fiber amplifiers," J. Non-Cryst. Solids 351, 2513-2518 (2005).

2004 (1)

B. G. Aitken, M. J. Dejneka, and M. L. Powley, "Tm-doped alkaline earth aluminate glass for optical amplification at 1460 nm," J. Non-Cryst. Solids 349, 115-119 (2004).
[CrossRef]

2002 (2)

Y. Emori, S. Kado, and S. Namiki, "Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high-power laser diodes," Opt. Fiber Technol. 8, 107-122 (2002).
[CrossRef]

Y. B. Shin, C. K. Yang, and J. Heo, "Optimization of Dy3+-doped Ge-Ga-As-S-CsBr glass composition and its 1.31µm emission properties," J. Non-Cryst. Solids 298, 153-159 (2002).
[CrossRef]

2001 (2)

Y. B. Shin, J. Heo, and H. S. Kim, "Enhancement of the 1.31-µm emission properties of Dy3+-doped Ge-Ga-S glasses with the addition of alkali halides," J. Mater. Res. 16, 1318-1324 (2001).
[CrossRef]

R. C. Schimmel, A. J. Faber, H. de Waardt, R. G. C. Beerkens, and G. D. Khoe, "Development of germanium gallium sulphide glass fibres for the 1.31µm praseodymium-doped fibre amplifier," J. Non-Cryst. Solids 284, 188-192 (2001).
[CrossRef]

2000 (3)

P. Nemec, B. Frumarová, M. Frumar, and J. Oswald, "Optical properties of low-phonon energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses," J. Phys. Chem. Solids 61, 1583-1589 (2000).
[CrossRef]

D. H. Cho, Y. G. Choi, and K. H. Kim, "Energy transfer from Tm3+:F43 to Dy3+:H11/26 in oxyfluoride tellurite glasses," Chem. Phys. Lett. 322, 263-266 (2000).
[CrossRef]

K. Kadono, T. Yazawa, M. Shojiya, and Y. Kawamoto, "Judd-Ofelt analysis and luminescence property of Tm3+ in Ga2S3-GeS2-La2S3 glasses," J. Non-Cryst. Solids 274, 75-80 (2000).
[CrossRef]

1999 (1)

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, "Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR," J. Non-Cryst. Solids 256&257, 253-259 (1999).
[CrossRef]

1994 (1)

1990 (1)

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+,Ho3+ doubly doped indium-based fluoride glasses." Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

1976 (1)

C. Brecher and L. A. Riseberg, "Laser-induced fluorescence line narrowing in Eu glass: a spectroscopic analysis of coordination structure," Phys. Rev. B 13, 81-93 (1976).
[CrossRef]

1971 (1)

M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

1970 (2)

H. Nishimura, M. Tanaka, and M. Tomura, "Energy transfer by resonance between TI+ ions in KI single crystals," J. Phys. Soc. Jpn. 28, 128-134 (1970).
[CrossRef]

J. T. Fournier and R. H. Bartram, "Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass," J. Phys. Chem. Solids 31, 2615-2624 (1970).
[CrossRef]

1968 (2)

W. T. Carnall, P. R. Fields, and K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

W. B. Gandrud and H. W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
[CrossRef]

1967 (2)

G. F. Imbusch, "Energy transfer in ruby," Phys. Rev. 153, 326-337 (1967).
[CrossRef]

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

1965 (1)

M. Inokuti and F. Hirayama, "Influence of energy transfer by the exchange mechanism on donor luminescence," J. Chem. Phys. 43, 1978-1989 (1965).
[CrossRef]

1964 (2)

R. G. Bennett, "Radiationless intermolecular energy transfer," J. Chem. Phys. 41, 3037-3040 (1964).
[CrossRef]

K. B. Eisenthal and S. Siegel, "Influence of resonance transfer on luminescence decay," J. Chem. Phys. 41, 652-655 (1964).
[CrossRef]

1954 (1)

D. L. Dexter and H. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

1953 (1)

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

Adam, J. L.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+,Ho3+ doubly doped indium-based fluoride glasses." Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Aggarwal, I. D.

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, "Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR," J. Non-Cryst. Solids 256&257, 253-259 (1999).
[CrossRef]

Aitken, B. G.

B. G. Aitken, M. J. Dejneka, and M. L. Powley, "Tm-doped alkaline earth aluminate glass for optical amplification at 1460 nm," J. Non-Cryst. Solids 349, 115-119 (2004).
[CrossRef]

Bartram, R. H.

J. T. Fournier and R. H. Bartram, "Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass," J. Phys. Chem. Solids 31, 2615-2624 (1970).
[CrossRef]

Beerkens, R. G.

R. C. Schimmel, A. J. Faber, H. de Waardt, R. G. C. Beerkens, and G. D. Khoe, "Development of germanium gallium sulphide glass fibres for the 1.31µm praseodymium-doped fibre amplifier," J. Non-Cryst. Solids 284, 188-192 (2001).
[CrossRef]

Bennett, R. G.

R. G. Bennett, "Radiationless intermolecular energy transfer," J. Chem. Phys. 41, 3037-3040 (1964).
[CrossRef]

Brecher, C.

C. Brecher and L. A. Riseberg, "Laser-induced fluorescence line narrowing in Eu glass: a spectroscopic analysis of coordination structure," Phys. Rev. B 13, 81-93 (1976).
[CrossRef]

Brenier, A.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+,Ho3+ doubly doped indium-based fluoride glasses." Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Chen, W.

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped Ge-Ga-Sb-Se glasses for 1.3µm optical fiber amplifiers," J. Non-Cryst. Solids 351, 2513-2518 (2005).

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped selenide glasses for 1.3µm optical fiber amplifiers," J. Mater. Res. 20, 2597-2602 (2005).
[CrossRef]

Cho, D. H.

D. H. Cho, Y. G. Choi, and K. H. Kim, "Energy transfer from Tm3+:F43 to Dy3+:H11/26 in oxyfluoride tellurite glasses," Chem. Phys. Lett. 322, 263-266 (2000).
[CrossRef]

Choi, Y. G.

D. H. Cho, Y. G. Choi, and K. H. Kim, "Energy transfer from Tm3+:F43 to Dy3+:H11/26 in oxyfluoride tellurite glasses," Chem. Phys. Lett. 322, 263-266 (2000).
[CrossRef]

Cole, B.

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, "Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR," J. Non-Cryst. Solids 256&257, 253-259 (1999).
[CrossRef]

de Waardt, H.

R. C. Schimmel, A. J. Faber, H. de Waardt, R. G. C. Beerkens, and G. D. Khoe, "Development of germanium gallium sulphide glass fibres for the 1.31µm praseodymium-doped fibre amplifier," J. Non-Cryst. Solids 284, 188-192 (2001).
[CrossRef]

Dejneka, M. J.

B. G. Aitken, M. J. Dejneka, and M. L. Powley, "Tm-doped alkaline earth aluminate glass for optical amplification at 1460 nm," J. Non-Cryst. Solids 349, 115-119 (2004).
[CrossRef]

Dexter, D. L.

D. L. Dexter and H. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

Eisenthal, K. B.

K. B. Eisenthal and S. Siegel, "Influence of resonance transfer on luminescence decay," J. Chem. Phys. 41, 652-655 (1964).
[CrossRef]

Emori, Y.

Y. Emori, S. Kado, and S. Namiki, "Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high-power laser diodes," Opt. Fiber Technol. 8, 107-122 (2002).
[CrossRef]

Faber, A. J.

R. C. Schimmel, A. J. Faber, H. de Waardt, R. G. C. Beerkens, and G. D. Khoe, "Development of germanium gallium sulphide glass fibres for the 1.31µm praseodymium-doped fibre amplifier," J. Non-Cryst. Solids 284, 188-192 (2001).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Fournier, J. T.

J. T. Fournier and R. H. Bartram, "Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass," J. Phys. Chem. Solids 31, 2615-2624 (1970).
[CrossRef]

Frumar, M.

P. Nemec, B. Frumarová, M. Frumar, and J. Oswald, "Optical properties of low-phonon energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses," J. Phys. Chem. Solids 61, 1583-1589 (2000).
[CrossRef]

Frumarová, B.

P. Nemec, B. Frumarová, M. Frumar, and J. Oswald, "Optical properties of low-phonon energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses," J. Phys. Chem. Solids 61, 1583-1589 (2000).
[CrossRef]

Gandrud, W. B.

W. B. Gandrud and H. W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
[CrossRef]

Heo, J.

Y. B. Shin, C. K. Yang, and J. Heo, "Optimization of Dy3+-doped Ge-Ga-As-S-CsBr glass composition and its 1.31µm emission properties," J. Non-Cryst. Solids 298, 153-159 (2002).
[CrossRef]

Y. B. Shin, J. Heo, and H. S. Kim, "Enhancement of the 1.31-µm emission properties of Dy3+-doped Ge-Ga-S glasses with the addition of alkali halides," J. Mater. Res. 16, 1318-1324 (2001).
[CrossRef]

Hirayama, F.

M. Inokuti and F. Hirayama, "Influence of energy transfer by the exchange mechanism on donor luminescence," J. Chem. Phys. 43, 1978-1989 (1965).
[CrossRef]

Imbusch, G. F.

G. F. Imbusch, "Energy transfer in ruby," Phys. Rev. 153, 326-337 (1967).
[CrossRef]

Inokuti, M.

M. Inokuti and F. Hirayama, "Influence of energy transfer by the exchange mechanism on donor luminescence," J. Chem. Phys. 43, 1978-1989 (1965).
[CrossRef]

Kado, S.

Y. Emori, S. Kado, and S. Namiki, "Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high-power laser diodes," Opt. Fiber Technol. 8, 107-122 (2002).
[CrossRef]

Kadono, K.

K. Kadono, T. Yazawa, M. Shojiya, and Y. Kawamoto, "Judd-Ofelt analysis and luminescence property of Tm3+ in Ga2S3-GeS2-La2S3 glasses," J. Non-Cryst. Solids 274, 75-80 (2000).
[CrossRef]

Kawamoto, Y.

K. Kadono, T. Yazawa, M. Shojiya, and Y. Kawamoto, "Judd-Ofelt analysis and luminescence property of Tm3+ in Ga2S3-GeS2-La2S3 glasses," J. Non-Cryst. Solids 274, 75-80 (2000).
[CrossRef]

Khoe, G. D.

R. C. Schimmel, A. J. Faber, H. de Waardt, R. G. C. Beerkens, and G. D. Khoe, "Development of germanium gallium sulphide glass fibres for the 1.31µm praseodymium-doped fibre amplifier," J. Non-Cryst. Solids 284, 188-192 (2001).
[CrossRef]

Kim, H. S.

Y. B. Shin, J. Heo, and H. S. Kim, "Enhancement of the 1.31-µm emission properties of Dy3+-doped Ge-Ga-S glasses with the addition of alkali halides," J. Mater. Res. 16, 1318-1324 (2001).
[CrossRef]

Kim, K. H.

D. H. Cho, Y. G. Choi, and K. H. Kim, "Energy transfer from Tm3+:F43 to Dy3+:H11/26 in oxyfluoride tellurite glasses," Chem. Phys. Lett. 322, 263-266 (2000).
[CrossRef]

Luo, L.

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped Ge-Ga-Sb-Se glasses for 1.3µm optical fiber amplifiers," J. Non-Cryst. Solids 351, 2513-2518 (2005).

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped selenide glasses for 1.3µm optical fiber amplifiers," J. Mater. Res. 20, 2597-2602 (2005).
[CrossRef]

Machewirth, D. P.

Moine, B.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+,Ho3+ doubly doped indium-based fluoride glasses." Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Moos, H. W.

W. B. Gandrud and H. W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
[CrossRef]

Mossadegh, R.

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, "Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR," J. Non-Cryst. Solids 256&257, 253-259 (1999).
[CrossRef]

Namiki, S.

Y. Emori, S. Kado, and S. Namiki, "Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high-power laser diodes," Opt. Fiber Technol. 8, 107-122 (2002).
[CrossRef]

Nemec, P.

P. Nemec, B. Frumarová, M. Frumar, and J. Oswald, "Optical properties of low-phonon energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses," J. Phys. Chem. Solids 61, 1583-1589 (2000).
[CrossRef]

Nishimura, H.

H. Nishimura, M. Tanaka, and M. Tomura, "Energy transfer by resonance between TI+ ions in KI single crystals," J. Phys. Soc. Jpn. 28, 128-134 (1970).
[CrossRef]

Oswald, J.

P. Nemec, B. Frumarová, M. Frumar, and J. Oswald, "Optical properties of low-phonon energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses," J. Phys. Chem. Solids 61, 1583-1589 (2000).
[CrossRef]

Pedrini, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+,Ho3+ doubly doped indium-based fluoride glasses." Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Pledel, C.

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+,Ho3+ doubly doped indium-based fluoride glasses." Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Powley, M. L.

B. G. Aitken, M. J. Dejneka, and M. L. Powley, "Tm-doped alkaline earth aluminate glass for optical amplification at 1460 nm," J. Non-Cryst. Solids 349, 115-119 (2004).
[CrossRef]

Pureza, P. C.

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, "Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR," J. Non-Cryst. Solids 256&257, 253-259 (1999).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

Riseberg, L. A.

C. Brecher and L. A. Riseberg, "Laser-induced fluorescence line narrowing in Eu glass: a spectroscopic analysis of coordination structure," Phys. Rev. B 13, 81-93 (1976).
[CrossRef]

Sanghera, J. S.

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, "Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR," J. Non-Cryst. Solids 256&257, 253-259 (1999).
[CrossRef]

Schimmel, R. C.

R. C. Schimmel, A. J. Faber, H. de Waardt, R. G. C. Beerkens, and G. D. Khoe, "Development of germanium gallium sulphide glass fibres for the 1.31µm praseodymium-doped fibre amplifier," J. Non-Cryst. Solids 284, 188-192 (2001).
[CrossRef]

Schulman, H. H.

D. L. Dexter and H. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

Shaw, L. B.

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, "Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR," J. Non-Cryst. Solids 256&257, 253-259 (1999).
[CrossRef]

Shin, Y. B.

Y. B. Shin, C. K. Yang, and J. Heo, "Optimization of Dy3+-doped Ge-Ga-As-S-CsBr glass composition and its 1.31µm emission properties," J. Non-Cryst. Solids 298, 153-159 (2002).
[CrossRef]

Y. B. Shin, J. Heo, and H. S. Kim, "Enhancement of the 1.31-µm emission properties of Dy3+-doped Ge-Ga-S glasses with the addition of alkali halides," J. Mater. Res. 16, 1318-1324 (2001).
[CrossRef]

Shojiya, M.

K. Kadono, T. Yazawa, M. Shojiya, and Y. Kawamoto, "Judd-Ofelt analysis and luminescence property of Tm3+ in Ga2S3-GeS2-La2S3 glasses," J. Non-Cryst. Solids 274, 75-80 (2000).
[CrossRef]

Siegel, S.

K. B. Eisenthal and S. Siegel, "Influence of resonance transfer on luminescence decay," J. Chem. Phys. 41, 652-655 (1964).
[CrossRef]

Sigel, G. H.

Snitzer, E.

Tanaka, M.

H. Nishimura, M. Tanaka, and M. Tomura, "Energy transfer by resonance between TI+ ions in KI single crystals," J. Phys. Soc. Jpn. 28, 128-134 (1970).
[CrossRef]

Tanimoto, O.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Tomura, M.

H. Nishimura, M. Tanaka, and M. Tomura, "Energy transfer by resonance between TI+ ions in KI single crystals," J. Phys. Soc. Jpn. 28, 128-134 (1970).
[CrossRef]

Weber, M. J.

M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

Wei, K.

Wenzel, J.

Yang, C. K.

Y. B. Shin, C. K. Yang, and J. Heo, "Optimization of Dy3+-doped Ge-Ga-As-S-CsBr glass composition and its 1.31µm emission properties," J. Non-Cryst. Solids 298, 153-159 (2002).
[CrossRef]

Yang, Z.

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped selenide glasses for 1.3µm optical fiber amplifiers," J. Mater. Res. 20, 2597-2602 (2005).
[CrossRef]

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped Ge-Ga-Sb-Se glasses for 1.3µm optical fiber amplifiers," J. Non-Cryst. Solids 351, 2513-2518 (2005).

Yazawa, T.

K. Kadono, T. Yazawa, M. Shojiya, and Y. Kawamoto, "Judd-Ofelt analysis and luminescence property of Tm3+ in Ga2S3-GeS2-La2S3 glasses," J. Non-Cryst. Solids 274, 75-80 (2000).
[CrossRef]

Yokota, M.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Chem. Phys. Lett. (1)

D. H. Cho, Y. G. Choi, and K. H. Kim, "Energy transfer from Tm3+:F43 to Dy3+:H11/26 in oxyfluoride tellurite glasses," Chem. Phys. Lett. 322, 263-266 (2000).
[CrossRef]

J. Chem. Phys. (7)

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[CrossRef]

D. L. Dexter and H. H. Schulman, "Theory of concentration quenching in inorganic phosphors," J. Chem. Phys. 22, 1063-1070 (1954).
[CrossRef]

K. B. Eisenthal and S. Siegel, "Influence of resonance transfer on luminescence decay," J. Chem. Phys. 41, 652-655 (1964).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions," J. Chem. Phys. 49, 4424-4442 (1968).
[CrossRef]

M. Inokuti and F. Hirayama, "Influence of energy transfer by the exchange mechanism on donor luminescence," J. Chem. Phys. 43, 1978-1989 (1965).
[CrossRef]

R. G. Bennett, "Radiationless intermolecular energy transfer," J. Chem. Phys. 41, 3037-3040 (1964).
[CrossRef]

W. B. Gandrud and H. W. Moos, "Rare-earth infrared lifetimes and exciton migration rates in trichloride crystals," J. Chem. Phys. 49, 2170-2182 (1968).
[CrossRef]

J. Mater. Res. (2)

Y. B. Shin, J. Heo, and H. S. Kim, "Enhancement of the 1.31-µm emission properties of Dy3+-doped Ge-Ga-S glasses with the addition of alkali halides," J. Mater. Res. 16, 1318-1324 (2001).
[CrossRef]

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped selenide glasses for 1.3µm optical fiber amplifiers," J. Mater. Res. 20, 2597-2602 (2005).
[CrossRef]

J. Non-Cryst. Solids (6)

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, "Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR," J. Non-Cryst. Solids 256&257, 253-259 (1999).
[CrossRef]

Y. B. Shin, C. K. Yang, and J. Heo, "Optimization of Dy3+-doped Ge-Ga-As-S-CsBr glass composition and its 1.31µm emission properties," J. Non-Cryst. Solids 298, 153-159 (2002).
[CrossRef]

R. C. Schimmel, A. J. Faber, H. de Waardt, R. G. C. Beerkens, and G. D. Khoe, "Development of germanium gallium sulphide glass fibres for the 1.31µm praseodymium-doped fibre amplifier," J. Non-Cryst. Solids 284, 188-192 (2001).
[CrossRef]

B. G. Aitken, M. J. Dejneka, and M. L. Powley, "Tm-doped alkaline earth aluminate glass for optical amplification at 1460 nm," J. Non-Cryst. Solids 349, 115-119 (2004).
[CrossRef]

K. Kadono, T. Yazawa, M. Shojiya, and Y. Kawamoto, "Judd-Ofelt analysis and luminescence property of Tm3+ in Ga2S3-GeS2-La2S3 glasses," J. Non-Cryst. Solids 274, 75-80 (2000).
[CrossRef]

Z. Yang, W. Chen, and L. Luo, "Dy3+-doped Ge-Ga-Sb-Se glasses for 1.3µm optical fiber amplifiers," J. Non-Cryst. Solids 351, 2513-2518 (2005).

J. Phys. Chem. Solids (2)

P. Nemec, B. Frumarová, M. Frumar, and J. Oswald, "Optical properties of low-phonon energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses," J. Phys. Chem. Solids 61, 1583-1589 (2000).
[CrossRef]

J. T. Fournier and R. H. Bartram, "Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass," J. Phys. Chem. Solids 31, 2615-2624 (1970).
[CrossRef]

J. Phys. Soc. Jpn. (2)

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

H. Nishimura, M. Tanaka, and M. Tomura, "Energy transfer by resonance between TI+ ions in KI single crystals," J. Phys. Soc. Jpn. 28, 128-134 (1970).
[CrossRef]

Opt. Fiber Technol. (1)

Y. Emori, S. Kado, and S. Namiki, "Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high-power laser diodes," Opt. Fiber Technol. 8, 107-122 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

G. F. Imbusch, "Energy transfer in ruby," Phys. Rev. 153, 326-337 (1967).
[CrossRef]

Phys. Rev. B (3)

C. Brecher and L. A. Riseberg, "Laser-induced fluorescence line narrowing in Eu glass: a spectroscopic analysis of coordination structure," Phys. Rev. B 13, 81-93 (1976).
[CrossRef]

M. J. Weber, "Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation," Phys. Rev. B 4, 2932-2939 (1971).
[CrossRef]

A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, "Fluorescence mechanisms in Tm3+ singly doped and Tm3+,Ho3+ doubly doped indium-based fluoride glasses." Phys. Rev. B 41, 5364-5371 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy-level diagram of Tm 3 + and Dy 3 + displaying energy-transfer processes.

Fig. 2
Fig. 2

Emission spectra of Ge 25 Ga 5 Sb 5 Se 65 glasses doped with (1) 0.1 wt. % Dy 3 + , (2) 0.1 wt. % Tm 3 + , and (3) 0.1 wt . % Dy 3 + + 0.1 wt . % Tm 3 + .

Fig. 3
Fig. 3

Emission spectra of Ge 25 Ga 5 Sb 5 Se 65 glasses doped with (1) 0.1, (2) 0.2, (3) 0.3, and (4) 0.4 wt. % Tm 3 + , where Dy 3 + concentration was fixed at 0.1 wt.%.

Fig. 4
Fig. 4

Emission spectra of Ge 25 Ga 5 Sb 5 Se 65 glasses doped with (1) 0, (2) 0.2, (3) 0.4, and (4) 0.8 wt. % Dy 3 + , where Tm 3 + concentration was fixed at 0.4 wt. %.

Fig. 5
Fig. 5

1.2 μ m fluorescence decay curves of Ge 25 Ga 5 Sb 5 Se 65 glasses doped with (a) 0, (b) 0.2, and (c) 0.4 wt. % Dy 3 + ions, where Tm 3 + concentration was fixed at 0.4 wt. %. Solid lines are plotted from the least-squares fit to the straight line.

Fig. 6
Fig. 6

Dy 3 + concentration dependence of the donor decay rate owing to diffusion. The dots represent experimental data, and the solid line is plotted from the least-squares fit to the straight line.

Tables (1)

Tables Icon

Table 1 Measured Fluorescence Lifetimes of Active Ions Doped Ge 25 Ga 5 Sb 5 Se 65 Glasses

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ m = t ϕ ( t ) d t ϕ ( t ) d t ,
Φ ( t ) = Φ ( 0 ) exp [ t τ 0 4 3 π Γ ( 1 3 s ) N a R 0 3 ( t τ 0 ) 3 s ] ,
Φ ( t ) = Φ ( 0 ) exp [ t τ 0 4 3 π 3 2 N a ( α t ) 1 2 ( 1 + 10.87 x + 15.50 x 2 1 + 8.743 x ) 3 4 ] ,
1 τ m = 1 τ 0 + 1 τ D ,
1 τ m 1 τ 0 = V C A C D ,

Metrics