Abstract

An analytic model is developed to evaluate the extractable energy from high-energy pulsed ytterbium-doped fiber amplifiers and lasers. The energy extraction capabilities under the limitation of spurious lasing, due to amplified spontaneous emission, are mapped for various numerical apertures, single- and multitransverse-mode evolution, and operating wavelengths. The calculation results of the analytic model show a good match with experimental results carried out for various double-clad fiber amplifiers. The model provides an accurate assessment for the maximum pulse energy that can be extracted from a given ytterbium-doped fiber. In addition, for a specific pump power, the model can be used to determine the minimum repetition rate and optimal length, under which the laser source can be operated before spurious lasing occurs.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, A. Liem, H. Zellmer, and A. Tunnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
    [CrossRef]
  2. J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
    [CrossRef]
  3. J. A. Alvarez-Chavez, H. L. Offerhous, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
    [CrossRef]
  4. C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
    [CrossRef]
  5. Y. Wang and H. Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," J. Lightwave Technol. 21, 2262-2270 (2003).
    [CrossRef]
  6. A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.
  7. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  8. I. Kelson and A. Hardy, "Strongly pumped fiber lasers," IEEE J. Quantum Electron. 34, 1570-1577 (1998).
    [CrossRef]
  9. I. Kelson and A. Hardy, "Optimization of strongly pumped fiber lasers," J. Lightwave Technol. 17, 891-897 (1999).
    [CrossRef]
  10. A. Bertoni and G. C. Reali, "A model for the optimization of double-clad fiber laser operation," Appl. Phys. B 66, 547-554 (1998).
    [CrossRef]
  11. M. Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier," in Conference on Lasers and Electro-Optics/International Quantum Electronic Conference and Photonic Applications Systems Technologies (Optical Society of America, 2004), presentation CTuS4.
    [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  13. J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, "Yb3+-ring-doped fiber for high-energy pulse amplification," Opt. Lett. 22, 1092-1094 (1997).
    [CrossRef] [PubMed]
  14. N. A. Brilliant, R. J. Beach, A. D. Drobshoff, and S. A. Payne, "Narrow-line ytterbium fiber master-oscillator power amplifier," J. Opt. Soc. Am. B 19, 981-991 (2002).
    [CrossRef]
  15. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
    [CrossRef]
  16. A. Hardy and R. Oron, "Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers," J. Lightwave Technol. 16, 1865-1873 (1998).
    [CrossRef]
  17. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  18. S. Acco, Y. Sintov, Y. Glick, O. Katz, Y. Nafcha, and R. Lavi, "Bend-loss control of multi-mode fiber power amplifiers producing single-mode operation," in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).
  19. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).
  20. J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, "A non-fused fiber coupler for side pumping of double clad fiber lasers," Opt. Commun. 220, 389-395 (2003).
    [CrossRef]

2004 (1)

2003 (3)

J. Limpert, A. Liem, H. Zellmer, and A. Tunnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

Y. Wang and H. Po, "Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification," J. Lightwave Technol. 21, 2262-2270 (2003).
[CrossRef]

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, "A non-fused fiber coupler for side pumping of double clad fiber lasers," Opt. Commun. 220, 389-395 (2003).
[CrossRef]

2002 (2)

N. A. Brilliant, R. J. Beach, A. D. Drobshoff, and S. A. Payne, "Narrow-line ytterbium fiber master-oscillator power amplifier," J. Opt. Soc. Am. B 19, 981-991 (2002).
[CrossRef]

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
[CrossRef]

2001 (1)

C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
[CrossRef]

2000 (2)

1999 (1)

1998 (3)

A. Bertoni and G. C. Reali, "A model for the optimization of double-clad fiber laser operation," Appl. Phys. B 66, 547-554 (1998).
[CrossRef]

I. Kelson and A. Hardy, "Strongly pumped fiber lasers," IEEE J. Quantum Electron. 34, 1570-1577 (1998).
[CrossRef]

A. Hardy and R. Oron, "Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers," J. Lightwave Technol. 16, 1865-1873 (1998).
[CrossRef]

1997 (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, "Yb3+-ring-doped fiber for high-energy pulse amplification," Opt. Lett. 22, 1092-1094 (1997).
[CrossRef] [PubMed]

Acco, S.

S. Acco, Y. Sintov, Y. Glick, O. Katz, Y. Nafcha, and R. Lavi, "Bend-loss control of multi-mode fiber power amplifiers producing single-mode operation," in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Alvarez-Chavez, J. A.

C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhous, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
[CrossRef]

Beach, R. J.

Bertoni, A.

A. Bertoni and G. C. Reali, "A model for the optimization of double-clad fiber laser operation," Appl. Phys. B 66, 547-554 (1998).
[CrossRef]

Brilliant, N. A.

Caplen, J. E.

Chang, Y.-C.

M. Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier," in Conference on Lasers and Electro-Optics/International Quantum Electronic Conference and Photonic Applications Systems Technologies (Optical Society of America, 2004), presentation CTuS4.
[PubMed]

Changkakoti, R.

M. Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier," in Conference on Lasers and Electro-Optics/International Quantum Electronic Conference and Photonic Applications Systems Technologies (Optical Society of America, 2004), presentation CTuS4.
[PubMed]

Chen, M. Y.

M. Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier," in Conference on Lasers and Electro-Optics/International Quantum Electronic Conference and Photonic Applications Systems Technologies (Optical Society of America, 2004), presentation CTuS4.
[PubMed]

Clarkson, W. A.

C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhous, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
[CrossRef]

Drobshoff, A. D.

Galvanauskas, A.

M. Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier," in Conference on Lasers and Electro-Optics/International Quantum Electronic Conference and Photonic Applications Systems Technologies (Optical Society of America, 2004), presentation CTuS4.
[PubMed]

Gatchell, P.

M. Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier," in Conference on Lasers and Electro-Optics/International Quantum Electronic Conference and Photonic Applications Systems Technologies (Optical Society of America, 2004), presentation CTuS4.
[PubMed]

Glick, Y.

S. Acco, Y. Sintov, Y. Glick, O. Katz, Y. Nafcha, and R. Lavi, "Bend-loss control of multi-mode fiber power amplifiers producing single-mode operation," in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Goldberg, L.

Hanna, D. C.

J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, "Yb3+-ring-doped fiber for high-energy pulse amplification," Opt. Lett. 22, 1092-1094 (1997).
[CrossRef] [PubMed]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Hardy, A.

Harschak, A.

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Hofer, S.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
[CrossRef]

Jeong, Y.

Jetschke, S.

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Katz, O.

S. Acco, Y. Sintov, Y. Glick, O. Katz, Y. Nafcha, and R. Lavi, "Bend-loss control of multi-mode fiber power amplifiers producing single-mode operation," in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Kelson, I.

I. Kelson and A. Hardy, "Optimization of strongly pumped fiber lasers," J. Lightwave Technol. 17, 891-897 (1999).
[CrossRef]

I. Kelson and A. Hardy, "Strongly pumped fiber lasers," IEEE J. Quantum Electron. 34, 1570-1577 (1998).
[CrossRef]

Kirchof, J.

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Kliner, D. A. V.

Knoke, S.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
[CrossRef]

Koplow, J. P.

Kumar, G.

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, "A non-fused fiber coupler for side pumping of double clad fiber lasers," Opt. Commun. 220, 389-395 (2003).
[CrossRef]

Lavi, R.

S. Acco, Y. Sintov, Y. Glick, O. Katz, Y. Nafcha, and R. Lavi, "Bend-loss control of multi-mode fiber power amplifiers producing single-mode operation," in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Liem, A.

J. Limpert, A. Liem, H. Zellmer, and A. Tunnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
[CrossRef]

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Limpert, J.

J. Limpert, A. Liem, H. Zellmer, and A. Tunnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
[CrossRef]

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Lu, J.

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, "A non-fused fiber coupler for side pumping of double clad fiber lasers," Opt. Commun. 220, 389-395 (2003).
[CrossRef]

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, "A non-fused fiber coupler for side pumping of double clad fiber lasers," Opt. Commun. 220, 389-395 (2003).
[CrossRef]

Mamidipudi, P.

M. Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier," in Conference on Lasers and Electro-Optics/International Quantum Electronic Conference and Photonic Applications Systems Technologies (Optical Society of America, 2004), presentation CTuS4.
[PubMed]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).

Morl, K.

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Muller, H. R.

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Nafcha, Y.

S. Acco, Y. Sintov, Y. Glick, O. Katz, Y. Nafcha, and R. Lavi, "Bend-loss control of multi-mode fiber power amplifiers producing single-mode operation," in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Nilsson, J.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous wave output power," Opt. Express 12, 6088-6092 (2004).
[CrossRef] [PubMed]

C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhous, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, "Yb3+-ring-doped fiber for high-energy pulse amplification," Opt. Lett. 22, 1092-1094 (1997).
[CrossRef] [PubMed]

Offerhous, H. L.

C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhous, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
[CrossRef]

Oron, R.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, "Yb3+-ring-doped fiber for high-energy pulse amplification," Opt. Lett. 22, 1092-1094 (1997).
[CrossRef] [PubMed]

Payne, D. N.

Payne, S. A.

Po, H.

Reali, G. C.

A. Bertoni and G. C. Reali, "A model for the optimization of double-clad fiber laser operation," Appl. Phys. B 66, 547-554 (1998).
[CrossRef]

Reichel, V.

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Renaud, C. C.

C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
[CrossRef]

Richardson, D. J.

C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhous, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
[CrossRef]

Sahu, J. K.

Sandrock, T.

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Sintov, Y.

S. Acco, Y. Sintov, Y. Glick, O. Katz, Y. Nafcha, and R. Lavi, "Bend-loss control of multi-mode fiber power amplifiers producing single-mode operation," in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Tunnermann, A.

J. Limpert, A. Liem, H. Zellmer, and A. Tunnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
[CrossRef]

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Turner, P. W.

C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhous, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000).
[CrossRef]

Ueda, K.

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, "A non-fused fiber coupler for side pumping of double clad fiber lasers," Opt. Commun. 220, 389-395 (2003).
[CrossRef]

Unger, S.

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Voelckel, H.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
[CrossRef]

Wang, Y.

Xu, J.

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, "A non-fused fiber coupler for side pumping of double clad fiber lasers," Opt. Commun. 220, 389-395 (2003).
[CrossRef]

Zellmer, H.

J. Limpert, A. Liem, H. Zellmer, and A. Tunnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
[CrossRef]

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Appl. Phys. B (2)

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average power, high energy nanosecond fiber amplifier," Appl. Phys. B 75, 477-479 (2002).
[CrossRef]

A. Bertoni and G. C. Reali, "A model for the optimization of double-clad fiber laser operation," Appl. Phys. B 66, 547-554 (1998).
[CrossRef]

Electron. Lett. (1)

J. Limpert, A. Liem, H. Zellmer, and A. Tunnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. 39, 645-647 (2003).
[CrossRef]

IEEE J. Quantum Electron. (3)

I. Kelson and A. Hardy, "Strongly pumped fiber lasers," IEEE J. Quantum Electron. 34, 1570-1577 (1998).
[CrossRef]

C. C. Renaud, H. L. Offerhous, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, and D. J. Richardson, "Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs," IEEE J. Quantum Electron. 37, 199-206 (2001).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, "A non-fused fiber coupler for side pumping of double clad fiber lasers," Opt. Commun. 220, 389-395 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (5)

S. Acco, Y. Sintov, Y. Glick, O. Katz, Y. Nafcha, and R. Lavi, "Bend-loss control of multi-mode fiber power amplifiers producing single-mode operation," in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).

M. Y. Chen, Y.-C. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, "27-mJ nanosecond pulses in M2=6.5 beam from a coiled highly multimode Yb-doped fiber amplifier," in Conference on Lasers and Electro-Optics/International Quantum Electronic Conference and Photonic Applications Systems Technologies (Optical Society of America, 2004), presentation CTuS4.
[PubMed]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H. R. Muller, J. Kirchof, T. Sandrock, and A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), postdeadline paper CPDD2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic description of the two operating regimes (energy storage and signal depletion) in an efficiently operated pulsed fiber laser. The upper-state population integral over the entire fiber length is limited to a certain value [ N 2 ( L , T es ) ] , above which the ASE power at the fiber ends [ P ASE + ( L , t ) , P ASE ( 0 , t ) ] depletes the upper-state population.

Fig. 2
Fig. 2

Cross sections of Yb 3 + -doped silica. Absorption cross section (dashed curve). Emission cross section (solid curve).

Fig. 3
Fig. 3

Maximum allowed upper-state population integral of Yb 3 + -doped fibers at various Γ ASE m NA values and for different overlap integrals ( Γ ASE ) . Signal wavelength is λ S = 1064 nm . Fiber cross-sectional data are given in Fig. 2. Fiber parameters and pump conditions are given in Table 1.

Fig. 4
Fig. 4

Normalized extractable energy (relative to the saturation energy) dependence on different signal wavelengths for various Γ ASE m NA values. Fiber cross-sectional data are given in Fig. 2. Fiber parameters and pump conditions are given in Table 1.

Fig. 5
Fig. 5

Extractable energy per unit core area dependence on signal wavelengths for various Γ ASE m NA values. Fiber cross-sectional data are given in Fig. 2. Fiber parameters and pump conditions are given in Table 1.

Fig. 6
Fig. 6

Minimum pulse repetition rate below which spurious ASE evolution occurs in a Yb 3 + -doped silica fiber with various Γ ASE m NA values and different signal wavelengths. Fiber cross-sectional data are given in Fig. 2. Fiber parameters and pump conditions are given in Table 1.

Fig. 7
Fig. 7

Optimal fiber length for a single pump configuration from one fiber end of a Yb 3 + -doped silica fiber with various Γ ASE m NA values and different signal wavelengths. Fiber cross-sectional data are given in Fig. 2. Fiber parameters and pump conditions are given in Table 1.

Fig. 8
Fig. 8

Experimental setup used to evaluate the extractable energy of an examined fiber.

Fig. 9
Fig. 9

Spectral response of fiber 2 with and without pump power. The seeder spectrum (without pump power) shows no spurious ASE lasing, where at 3 W pump power the ASE begins to dominate and deplete the upper-state population.

Fig. 10
Fig. 10

Dependence of Γ p ( σ e ν p + σ a ν p ) [ N 2 ( L opt ν s , T es ) 2 n th s 2 L opt ν s ] on signal wavelength for different pump wavelengths. Γ ASE m NA = 0.0805 is taken from the calculation.

Tables (3)

Tables Icon

Table 1 Fiber and Pump Parameters Used in Various Calculations

Tables Icon

Table 2 Specifications of the Examined Fibers

Tables Icon

Table 3 Performance of the Examined Fibers under Operation in a MOPA Configuration

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

d P p ± ( z , t ) d z = [ Γ p ( σ e ν p + σ a ν p ) n 2 ( z , t ) ( Γ p σ a ν p n + α p ) ] P p ± ( z , t ) ,
d P ASE ± ( z , t , ν ASE ) d z = [ Γ ASE ( σ e ν ASE + σ a ν ASE ) n 2 ( z , t ) ( Γ ASE σ a ν ASE n + α ASE ) ] P ASE ± ( z , t , ν ASE ) + m h ν ASE Γ ASE g ( ν ASE ) τ 2 n 2 ( z , t ) NA 2 4 n c 2 A ,
E ext ( t ) = ln ( 10 ) 10 G c ( dB ) E sat ,
E sat = h ν s A ( σ a ν s + σ e ν s ) Γ s ,
G c ( dB ) = 10 ln ( 10 ) [ Γ s ( σ a ν s + σ e ν s ) N 2 ( L , t ) ( σ a ν s Γ s n + α s ) L ] ,
N 2 ( z , t ) = 0 z n 2 ( z , t ) d z ,
d n 2 ( z , t ) d t = [ Γ p ( σ e ν p + σ a ν p ) n 2 ( z , t ) + Γ p σ a ν p n ] P p + ( z , t ) + P p ( z , t ) h ν p A n 2 ( z , t ) τ 2 n 2 ( z , t ) B . W . Γ ASE ( σ e ν ASE + σ a ν ASE ) P ASE + ( z , t , ν ASE ) + P ASE ( z , t , ν ASE ) h ν ASE A d ν ASE + n B . W . Γ ASE σ a ν ASE P ASE + ( z , t , ν ASE ) + P ASE ( z , t , ν ASE ) h ν ASE A d ν ASE ,
B . W . Γ ASE ( σ e ν ASE + σ a ν ASE ) P ASE + ( L , t , ν ASE ) + P ASE ( L , t , ν ASE ) h ν ASE A d ν ASE = 1 τ 2 .
P ASE + ( z , t , ν ASE ) = 0 z exp [ ( Γ ASE σ a ν ASE n + α ASE ) z Γ ASE ( σ e ν ASE + σ a ν ASE ) N 2 ( z , t ) ] SE ( z , t , ν ASE ) d z exp [ ( Γ ASE σ a ν ASE n + α ASE ) z Γ ASE ( σ e ν ASE + σ a ν ASE ) N 2 ( z , t ) ] ,
SE ( z , t , ν ASE ) = m h ν ASE Γ ASE n 2 ( z , t ) τ 2 NA 2 4 n c 2 g ( ν ASE ) A .
N 2 ( z , t ) = N 2 ( L , t ) L z ,
N 2 ( L , t ) = 0 L n 2 ( z , t ) d z .
P ASE + ( z , t ) = SE ( t , ν ASE ) 0 z exp [ ( Γ ASE σ a ν ASE n + α ASE ) z ( σ e ν ASE + σ a ν ASE ) Γ ASE N 2 ( L , t ) L z ] d z exp [ ( Γ ASE σ a ν ASE n + α ASE ) z Γ ASE ( σ e ν ASE + σ a ν ASE ) N 2 ( z , t ) ] ,
SE ( t , ν ASE ) = m h ν ASE Γ ASE N 2 ( L , t ) L τ 2 NA 2 4 n c 2 g ( ν ASE ) A .
P ASE + ( L , t ) = SE ( t , ν ASE ) { exp [ Γ ASE ( σ e ν ASE + σ a ν ASE ) N 2 ( L , t ) ( Γ ASE σ a ν ASE n + α ASE ) L ] 1 } Γ ASE ( σ e ν ASE + σ a ν ASE ) N 2 ( L , t ) L ( Γ ASE σ a ν ASE n + α ASE ) .
SE ( t ) Γ ASE ( σ e ν ASE + σ a ASE ) h ν ASE A = m Γ ASE 2 N 2 ( L , t ) L τ 2 NA 2 4 n c 2 ( σ e ν ASE + σ a ν ASE ) g ( ν ASE ) ,
4 n c 2 NA 2 Γ ASE m = B . W . exp [ Γ ASE ( σ e ν ASE + σ a ν ASE ) N 2 ( L , T es ) ( Γ ASE σ a ν ASE n + α ASE ) L ] 1 1 n th ASE L N 2 ( L , T es ) g ( ν ASE ) d ν ASE ,
n th ASE = Γ ASE σ a ν ASE n + α ASE Γ ASE ( σ e ν ASE + σ a ν ASE ) .
E ext = [ Γ s ( σ e ν s + σ a ν s ) N 2 ( L , T es ) ( σ a ν s Γ s n + α s ) L ] E sat ,
d N 2 ( z , t ) d t = P p ( 0 , t ) P p ( z , t ) h ν p A N 2 ( z , t ) τ 2 ,
P p ( z , t ) = P p ( 0 , t ) exp [ Γ p ( σ e ν p + σ a ν p ) N 2 ( z , t ) ( Γ p σ a ν p n + α p ) z ] .
d N 2 ( z , t ) d t = P p ( 0 , t ) h ν p A P p ( 0 , t ) h ν p A exp [ ( Γ p σ a ν p n + α p ) z ] exp [ Γ p ( σ e ν p + σ a ν p ) N 2 ( z , t ) ] N 2 ( z , t ) τ 2 .
d N 2 ( z , t ) d t = P p ( 0 , t ) h ν p A P p ( 0 , t ) h ν p A exp { [ ( N 2 ( L , T es ) 2 L + n th s 2 ) Γ p ( σ e ν p + σ a ν p ) Γ p σ a ν p n α p ] z } exp { Γ p ( σ e ν p + σ a ν p ) [ N 2 ( z , t ) ( N 2 ( L , T es ) 2 L + n th s 2 ) z ] } N 2 ( z , t ) τ 2 ,
n th s = Γ s σ a ν s n + α s Γ s ( σ e ν s + σ a ν s ) .
{ [ N 2 ( L , T es ) ] L } z .
[ N 2 ( L , T es ) 2 L + n th s 2 ] z .
Γ p ( σ e ν p + σ a ν p ) { N 2 ( z , t ) [ N 2 ( L , T es ) 2 L + n th s 2 ] z } 1 .
Γ p ( σ e ν p + σ a ν p ) { N 2 ( z , t ) [ N 2 ( L , T es ) 2 L + n th s 2 ] z }
d N 2 ( z , t ) d t P p ( 0 , t ) h ν p A P p ( 0 , t ) h ν p A exp ( { [ N 2 ( L , T es ) 2 L + n th s 2 ] Γ p ( σ e ν p + σ a ν p ) Γ p σ a ν p n α p } z ) ( 1 + Γ p ( σ e ν p + σ a ν p ) { N 2 ( z , t ) [ N 2 ( L ) 2 L n th s 2 ] z } ) N 2 ( z , t ) τ 2 .
N 2 ( z , t ) = B ( z ) + [ n th s z B ( z ) ] exp [ C ( z ) t ] ,
B ( z ) 1 exp ( { ( Γ p σ a ν p n + α p ) z Γ p ( σ e ν p + σ a ν p ) [ N 2 ( L , T es ) 2 L + n th s 2 ] z } ) { 1 Γ p ( σ e ν p + σ a ν p ) [ N 2 ( L , T es ) 2 L + n th s 2 ] z } Γ p ( σ e ν p + σ a ν p ) [ exp ( { ( Γ p σ a ν p n + α p ) z Γ p ( σ e ν p + σ a ν p ) [ N 2 ( L , T es ) 2 L + n th s 2 ] z } ) + P p sat P p 0 ] .
C ( z ) = 1 τ 2 [ P p 0 P p sat exp ( { ( Γ p σ a ν p n + α p ) z Γ p ( σ e ν p + σ a ν p ) [ N 2 ( L , T es ) 2 L + n th s 2 ] z } ) + 1 ] ,
P p sat = h ν p A Γ p ( σ e ν p + σ a ν p ) τ 2 .
T es = ln [ N 2 ( L , T es ) B ( L ) n th s L B ( L ) ] C ( L ) .
d n 2 ( L , t ) d t = P p ( L , t ) h ν p A [ Γ p σ a ν p n Γ p ( σ e ν p + σ a ν p ) n 2 ( L , t ) ] n 2 ( L , t ) τ 2 ,
P p ( L , t ) = P p ( 0 , t ) exp [ Γ p ( σ e ν p + σ a ν p ) N 2 ( L , T es ) ( Γ p σ a ν p n + α p ) L ] .
L opt = Γ p ( σ e ν p + σ a ν p ) N 2 ( L , T es ) + ln { P p 0 P psat [ Γ p σ a ν p n Γ p ( σ e ν p + σ a ν p ) n th s 1 ] } Γ p σ a ν p n + α p ,
P psat = h ν p A Γ p ( σ e ν p + σ a ν p ) τ 2 , n th s = Γ s σ a ν s n + α s Γ s ( σ e ν s + σ a ν s ) .
g c ν = Γ s ( σ e ν s + σ a ν s ) N 2 ( L , T es ) ( σ a ν s Γ s n + α s ) L .
Γ p ( σ e ν p + σ a ν p ) { N 2 ( z , t ) [ N 2 ( L , T es ) 2 L + n th s 2 ] z } 1 .
Γ p ( σ e ν p + σ a ν p ) [ N 2 ( L opt ν s , T es ) 2 n th s 2 L opt ν s ] 1

Metrics