Abstract

A new approach for the prediction of energy-transfer efficiencies in codoped Er–Yb double-clad fiber (EYDCF) is presented. Ab initio calculations have been performed on the basis of migration-assisted energy-transfer models. The two main Yb3+-to-Er3+ energy transfers as well as the Er3+ cooperative upconversion were theoretically estimated, and the results indicate that the secondary energy-transfer parameter is more efficient than the upconversion process. Theoretical calculations were found to be consistent with experimental energy-transfer parameters recorded in various fiber samples. We show that the first Yb3+-to-Er3+ energy-transfer parameter that is needed in all modelings based on rate equations can be calculated by use of a simple relation. Our approach also permits the prediction of the laser efficiency of EYDCFs, and a comparison of measured and calculated maximum laser slope efficiency shows a good agreement.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, "Diode-pumped bulk erbium-ytterbium lasers," Appl. Phys. B 63, 425-436 (1996).
  2. E. Georgiou, O. Musset, J. P. Boquillon, B. Denker, and S. E. Sverchkov, "50 mJ/30 ns FTIR Q-switched diode-pumped Er:Yb:glass 1.54 µm laser," Opt. Commun. 198, 147-153 (2001).
    [CrossRef]
  3. A. Levoshkin and J. E. Montagne, "Efficient diode pumping for Q-switched Yb:Er:glass lasers," Appl. Opt. 40, 3023-3032 (2001).
    [CrossRef]
  4. G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003).
    [CrossRef]
  5. B. T. Hansson and A. T. Friberg, "Eye-safe actively Q-switched microchip laser with an electro-absorbing semiconductor modulator," Opt. Lett. 26, 1057-1059 (2001).
    [CrossRef]
  6. Ph. Thony, B. Ferrand, and E. Molva, "1.55 µm passively Q-switched microchip laser," in Advanced Solid State Lasers, W.R. Bosenberg and M.M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 327-329.
  7. R. Häring, R. Paschotta, R. Fluck, E. Gini, H. Melchior, and U. Keller, "Passively Q-switched microchip laser at 1.5 µm," J. Opt. Soc. Am. B 18, 1805-1812 (2001).
    [CrossRef]
  8. S. Jiang, M. Myers, and N. Peyghambarian, "Er3+ doped phosphate glasses and lasers," J. Non-Cryst. Solids 239, 143-148 (1998).
    [CrossRef]
  9. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, "Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers," J. Lightwave Technol. 16, 1990-2001 (1998).
    [CrossRef]
  10. J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
    [CrossRef]
  11. M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004).
    [CrossRef]
  12. E. Tanguy, C. Larat, and J. P. Pocholle, "Modelling of the erbium-ytterbium laser," Opt. Commun. 153, 172-183 (1998).
    [CrossRef]
  13. G. C. Valley, "Modeling cladding-pumped Er/Yb fiber amplifiers," Opt. Laser Technol. 7, 21-44 (2001).
  14. T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
    [CrossRef]
  15. S. U. Alam, P. W. Turner, A. B. Grudinin, and J. Nilsson, "High energy, high repetition rate, tunable Er-Yb-codoped Q-switched fibre laser," in Conference on Lasers and Electro-Optics Vol. 56 of OSA Trans in Optics and Photonics Series (Optical Society of America, 2001), pp. 218-219.
  16. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W.A. Clarkson, S. Girard, and R. Moncorgé, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002).
    [CrossRef]
  17. P. Petropoulos, S. Dhanjal, D. J. Richardson, and N. I. Zheludev, "Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror," Opt. Commun. 166, 239-245 (1999).
    [CrossRef]
  18. M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
    [CrossRef]
  19. S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, "The mechanism of Tm-->Ho energy transfer in LiYF4," J. Phys. Condens. Matter 44, 8525-8542 (1992).
    [CrossRef]
  20. M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, "Energy transfer between lanthanide and actinide ions in LiYF4," Opt. Mater. 6, 121-127 (1996).
    [CrossRef]
  21. J. A. Caird, A. J. Ramponi, and P. R. Staver, "Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses," J. Opt. Soc. Am. B 8, 1391-1403 (1991).
    [CrossRef]
  22. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley Interscience, 1994).
  23. P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60, 11380-11390 (1999).
    [CrossRef]
  24. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, "Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers," Opt. Lett. 20, 2487-2489 (1995).
    [CrossRef] [PubMed]
  25. B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er3+- and Yb3+/Er3+-doped phosphate glasses," J. Opt. Soc. Am. B 17, 833-839 (2000).
    [CrossRef]
  26. G. A. Sefler, W. D. Mack, G. C. Valley, and T. S. Rose, "Secondary energy transfer and nonparticipatory Yb3+ ions in Er3+-Yb3+ high-power amplifier fibers," J. Opt. Soc. Am. B 21, 1740-1748 (2004).
    [CrossRef]
  27. S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, "Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass," Opt. Quantum Electron. 31, 1345-1346 (1999).
    [CrossRef]
  28. J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses," Appl. Phys. B 74, 233-236 (2002).
    [CrossRef]

2004

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004).
[CrossRef]

G. A. Sefler, W. D. Mack, G. C. Valley, and T. S. Rose, "Secondary energy transfer and nonparticipatory Yb3+ ions in Er3+-Yb3+ high-power amplifier fibers," J. Opt. Soc. Am. B 21, 1740-1748 (2004).
[CrossRef]

2003

G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003).
[CrossRef]

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

2002

M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W.A. Clarkson, S. Girard, and R. Moncorgé, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002).
[CrossRef]

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses," Appl. Phys. B 74, 233-236 (2002).
[CrossRef]

2001

2000

1999

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, "Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass," Opt. Quantum Electron. 31, 1345-1346 (1999).
[CrossRef]

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60, 11380-11390 (1999).
[CrossRef]

P. Petropoulos, S. Dhanjal, D. J. Richardson, and N. I. Zheludev, "Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror," Opt. Commun. 166, 239-245 (1999).
[CrossRef]

1998

E. Tanguy, C. Larat, and J. P. Pocholle, "Modelling of the erbium-ytterbium laser," Opt. Commun. 153, 172-183 (1998).
[CrossRef]

S. Jiang, M. Myers, and N. Peyghambarian, "Er3+ doped phosphate glasses and lasers," J. Non-Cryst. Solids 239, 143-148 (1998).
[CrossRef]

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, "Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers," J. Lightwave Technol. 16, 1990-2001 (1998).
[CrossRef]

1996

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, "Diode-pumped bulk erbium-ytterbium lasers," Appl. Phys. B 63, 425-436 (1996).

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, "Energy transfer between lanthanide and actinide ions in LiYF4," Opt. Mater. 6, 121-127 (1996).
[CrossRef]

1995

1992

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, "The mechanism of Tm-->Ho energy transfer in LiYF4," J. Phys. Condens. Matter 44, 8525-8542 (1992).
[CrossRef]

1991

1967

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Alam, S. U.

S. U. Alam, P. W. Turner, A. B. Grudinin, and J. Nilsson, "High energy, high repetition rate, tunable Er-Yb-codoped Q-switched fibre laser," in Conference on Lasers and Electro-Optics Vol. 56 of OSA Trans in Optics and Photonics Series (Optical Society of America, 2001), pp. 218-219.

Boquillon, J. P.

E. Georgiou, O. Musset, J. P. Boquillon, B. Denker, and S. E. Sverchkov, "50 mJ/30 ns FTIR Q-switched diode-pumped Er:Yb:glass 1.54 µm laser," Opt. Commun. 198, 147-153 (2001).
[CrossRef]

Caird, J. A.

Caplen, J. E.

Chardon, A. M.

Cianci, E.

G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003).
[CrossRef]

Clarkson, W. A.

M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004).
[CrossRef]

M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W.A. Clarkson, S. Girard, and R. Moncorgé, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002).
[CrossRef]

Denker, B.

E. Georgiou, O. Musset, J. P. Boquillon, B. Denker, and S. E. Sverchkov, "50 mJ/30 ns FTIR Q-switched diode-pumped Er:Yb:glass 1.54 µm laser," Opt. Commun. 198, 147-153 (2001).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley Interscience, 1994).

Dhanjal, S.

P. Petropoulos, S. Dhanjal, D. J. Richardson, and N. I. Zheludev, "Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror," Opt. Commun. 166, 239-245 (1999).
[CrossRef]

Dong, L.

Doualan, J. L.

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60, 11380-11390 (1999).
[CrossRef]

Dussardier, B.

Ebendorff-Heidepriem, H.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses," Appl. Phys. B 74, 233-236 (2002).
[CrossRef]

Ehrt, D.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses," Appl. Phys. B 74, 233-236 (2002).
[CrossRef]

Ferrand, B.

Ph. Thony, B. Ferrand, and E. Molva, "1.55 µm passively Q-switched microchip laser," in Advanced Solid State Lasers, W.R. Bosenberg and M.M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 327-329.

Fluck, R.

Foglietti, V.

G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003).
[CrossRef]

Friberg, A. T.

Georgiou, E.

E. Georgiou, O. Musset, J. P. Boquillon, B. Denker, and S. E. Sverchkov, "50 mJ/30 ns FTIR Q-switched diode-pumped Er:Yb:glass 1.54 µm laser," Opt. Commun. 198, 147-153 (2001).
[CrossRef]

Gesland, J. Y.

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, "Energy transfer between lanthanide and actinide ions in LiYF4," Opt. Mater. 6, 121-127 (1996).
[CrossRef]

Gini, E.

Girard, S.

M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W.A. Clarkson, S. Girard, and R. Moncorgé, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002).
[CrossRef]

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60, 11380-11390 (1999).
[CrossRef]

Grudinin, A. B.

S. U. Alam, P. W. Turner, A. B. Grudinin, and J. Nilsson, "High energy, high repetition rate, tunable Er-Yb-codoped Q-switched fibre laser," in Conference on Lasers and Electro-Optics Vol. 56 of OSA Trans in Optics and Photonics Series (Optical Society of America, 2001), pp. 218-219.

Hansson, B. T.

Häring, R.

Hubert, S.

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, "Energy transfer between lanthanide and actinide ions in LiYF4," Opt. Mater. 6, 121-127 (1996).
[CrossRef]

Hwang, B. C.

Jander, P.

M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004).
[CrossRef]

Jeong, Y.

M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004).
[CrossRef]

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

Jiang, S.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er3+- and Yb3+/Er3+-doped phosphate glasses," J. Opt. Soc. Am. B 17, 833-839 (2000).
[CrossRef]

S. Jiang, M. Myers, and N. Peyghambarian, "Er3+ doped phosphate glasses and lasers," J. Non-Cryst. Solids 239, 143-148 (1998).
[CrossRef]

Jose, G.

G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003).
[CrossRef]

Keller, U.

Krupke, W. F.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, "The mechanism of Tm-->Ho energy transfer in LiYF4," J. Phys. Condens. Matter 44, 8525-8542 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, "The mechanism of Tm-->Ho energy transfer in LiYF4," J. Phys. Condens. Matter 44, 8525-8542 (1992).
[CrossRef]

Laporta, P.

G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003).
[CrossRef]

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, "Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass," Opt. Quantum Electron. 31, 1345-1346 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, "Diode-pumped bulk erbium-ytterbium lasers," Appl. Phys. B 63, 425-436 (1996).

Larat, C.

E. Tanguy, C. Larat, and J. P. Pocholle, "Modelling of the erbium-ytterbium laser," Opt. Commun. 153, 172-183 (1998).
[CrossRef]

Laroche, M.

M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004).
[CrossRef]

M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W.A. Clarkson, S. Girard, and R. Moncorgé, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002).
[CrossRef]

Le Boulanger, P.

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60, 11380-11390 (1999).
[CrossRef]

Levoshkin, A.

Li, L.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

Longhi, S.

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, "Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass," Opt. Quantum Electron. 31, 1345-1346 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, "Diode-pumped bulk erbium-ytterbium lasers," Appl. Phys. B 63, 425-436 (1996).

Louis, M.

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, "Energy transfer between lanthanide and actinide ions in LiYF4," Opt. Mater. 6, 121-127 (1996).
[CrossRef]

Luo, T.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er3+- and Yb3+/Er3+-doped phosphate glasses," J. Opt. Soc. Am. B 17, 833-839 (2000).
[CrossRef]

Mack, W. D.

Mafi, A.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

Margerie, J.

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60, 11380-11390 (1999).
[CrossRef]

Maurice, E.

Melchior, H.

Minelly, J. D.

Moloney, J. V.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

Molva, E.

Ph. Thony, B. Ferrand, and E. Molva, "1.55 µm passively Q-switched microchip laser," in Advanced Solid State Lasers, W.R. Bosenberg and M.M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 327-329.

Moncorgé, R.

M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W.A. Clarkson, S. Girard, and R. Moncorgé, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002).
[CrossRef]

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60, 11380-11390 (1999).
[CrossRef]

Monnom, G.

Montagne, J. E.

Musset, O.

E. Georgiou, O. Musset, J. P. Boquillon, B. Denker, and S. E. Sverchkov, "50 mJ/30 ns FTIR Q-switched diode-pumped Er:Yb:glass 1.54 µm laser," Opt. Commun. 198, 147-153 (2001).
[CrossRef]

Myers, M.

S. Jiang, M. Myers, and N. Peyghambarian, "Er3+ doped phosphate glasses and lasers," J. Non-Cryst. Solids 239, 143-148 (1998).
[CrossRef]

Nilsson, J.

M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004).
[CrossRef]

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W.A. Clarkson, S. Girard, and R. Moncorgé, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser," Opt. Lett. 27, 1980-1982 (2002).
[CrossRef]

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, "Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers," J. Lightwave Technol. 16, 1990-2001 (1998).
[CrossRef]

S. U. Alam, P. W. Turner, A. B. Grudinin, and J. Nilsson, "High energy, high repetition rate, tunable Er-Yb-codoped Q-switched fibre laser," in Conference on Lasers and Electro-Optics Vol. 56 of OSA Trans in Optics and Photonics Series (Optical Society of America, 2001), pp. 218-219.

Ostrowsky, D. B.

Paschotta, R.

Payne, D. N.

Payne, S. A.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, "The mechanism of Tm-->Ho energy transfer in LiYF4," J. Phys. Condens. Matter 44, 8525-8542 (1992).
[CrossRef]

Petropoulos, P.

P. Petropoulos, S. Dhanjal, D. J. Richardson, and N. I. Zheludev, "Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror," Opt. Commun. 166, 239-245 (1999).
[CrossRef]

Peyghambarian, N.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er3+- and Yb3+/Er3+-doped phosphate glasses," J. Opt. Soc. Am. B 17, 833-839 (2000).
[CrossRef]

S. Jiang, M. Myers, and N. Peyghambarian, "Er3+ doped phosphate glasses and lasers," J. Non-Cryst. Solids 239, 143-148 (1998).
[CrossRef]

Philipps, J. F.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses," Appl. Phys. B 74, 233-236 (2002).
[CrossRef]

Pocholle, J. P.

E. Tanguy, C. Larat, and J. P. Pocholle, "Modelling of the erbium-ytterbium laser," Opt. Commun. 153, 172-183 (1998).
[CrossRef]

Qiu, T.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

Ramponi, A. J.

Richardson, D. J.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

P. Petropoulos, S. Dhanjal, D. J. Richardson, and N. I. Zheludev, "Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror," Opt. Commun. 166, 239-245 (1999).
[CrossRef]

Rose, T. S.

Sahu, J. K.

M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004).
[CrossRef]

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

Sauerbrey, R.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses," Appl. Phys. B 74, 233-236 (2002).
[CrossRef]

Schulzgen, A.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

Sefler, G. A.

Shepherd, D. P.

Simoni, E.

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, "Energy transfer between lanthanide and actinide ions in LiYF4," Opt. Mater. 6, 121-127 (1996).
[CrossRef]

Smith, L. K.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, "The mechanism of Tm-->Ho energy transfer in LiYF4," J. Phys. Condens. Matter 44, 8525-8542 (1992).
[CrossRef]

Sorbello, G.

G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003).
[CrossRef]

B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, "Cooperative upconversion and energy transfer of new high Er3+- and Yb3+/Er3+-doped phosphate glasses," J. Opt. Soc. Am. B 17, 833-839 (2000).
[CrossRef]

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, "Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass," Opt. Quantum Electron. 31, 1345-1346 (1999).
[CrossRef]

Staver, P. R.

Svelto, C.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, "Diode-pumped bulk erbium-ytterbium lasers," Appl. Phys. B 63, 425-436 (1996).

Svelto, O.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, "Diode-pumped bulk erbium-ytterbium lasers," Appl. Phys. B 63, 425-436 (1996).

Sverchkov, S. E.

E. Georgiou, O. Musset, J. P. Boquillon, B. Denker, and S. E. Sverchkov, "50 mJ/30 ns FTIR Q-switched diode-pumped Er:Yb:glass 1.54 µm laser," Opt. Commun. 198, 147-153 (2001).
[CrossRef]

Taccheo, S.

G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003).
[CrossRef]

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, "Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass," Opt. Quantum Electron. 31, 1345-1346 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, "Diode-pumped bulk erbium-ytterbium lasers," Appl. Phys. B 63, 425-436 (1996).

Tanguy, E.

E. Tanguy, C. Larat, and J. P. Pocholle, "Modelling of the erbium-ytterbium laser," Opt. Commun. 153, 172-183 (1998).
[CrossRef]

Tanimoto, O.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Tassano, J. B.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, "The mechanism of Tm-->Ho energy transfer in LiYF4," J. Phys. Condens. Matter 44, 8525-8542 (1992).
[CrossRef]

Temyanko, V. L.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

Thony, Ph.

Ph. Thony, B. Ferrand, and E. Molva, "1.55 µm passively Q-switched microchip laser," in Advanced Solid State Lasers, W.R. Bosenberg and M.M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 327-329.

Töpfer, T.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses," Appl. Phys. B 74, 233-236 (2002).
[CrossRef]

Turner, P. W.

S. U. Alam, P. W. Turner, A. B. Grudinin, and J. Nilsson, "High energy, high repetition rate, tunable Er-Yb-codoped Q-switched fibre laser," in Conference on Lasers and Electro-Optics Vol. 56 of OSA Trans in Optics and Photonics Series (Optical Society of America, 2001), pp. 218-219.

Valley, G. C.

Vienne, G. G.

Watson, J.

Yokota, M.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Zheludev, N. I.

P. Petropoulos, S. Dhanjal, D. J. Richardson, and N. I. Zheludev, "Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror," Opt. Commun. 166, 239-245 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, "Diode-pumped bulk erbium-ytterbium lasers," Appl. Phys. B 63, 425-436 (1996).

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, "Energy transfer and upconversion in erbium-ytterbium-doped fluoride phosphate glasses," Appl. Phys. B 74, 233-236 (2002).
[CrossRef]

Electron. Lett.

M. Laroche, P. Jander, W. A. Clarkson, J. K. Sahu, J. Nilsson, and Y. Jeong, "High power cladding-pumped tunable Er, Yb-doped fibre laser," Electron. Lett. 40, 855-856 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, "Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers," IEEE Photon. Technol. Lett. 16, 2592-2594 (2004).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

S. Jiang, M. Myers, and N. Peyghambarian, "Er3+ doped phosphate glasses and lasers," J. Non-Cryst. Solids 239, 143-148 (1998).
[CrossRef]

G. Jose, G. Sorbello, S. Taccheo, E. Cianci, V. Foglietti, and P. Laporta, "Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses," J. Non-Cryst. Solids 322, 256-261 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, "The mechanism of Tm-->Ho energy transfer in LiYF4," J. Phys. Condens. Matter 44, 8525-8542 (1992).
[CrossRef]

J. Phys. Soc. Jpn.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[CrossRef]

Opt. Commun.

E. Georgiou, O. Musset, J. P. Boquillon, B. Denker, and S. E. Sverchkov, "50 mJ/30 ns FTIR Q-switched diode-pumped Er:Yb:glass 1.54 µm laser," Opt. Commun. 198, 147-153 (2001).
[CrossRef]

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, "A 103 W erbium-ytterbium co-doped large-core fiber laser," Opt. Commun. 227, 159-163 (2003).
[CrossRef]

E. Tanguy, C. Larat, and J. P. Pocholle, "Modelling of the erbium-ytterbium laser," Opt. Commun. 153, 172-183 (1998).
[CrossRef]

P. Petropoulos, S. Dhanjal, D. J. Richardson, and N. I. Zheludev, "Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror," Opt. Commun. 166, 239-245 (1999).
[CrossRef]

Opt. Laser Technol.

G. C. Valley, "Modeling cladding-pumped Er/Yb fiber amplifiers," Opt. Laser Technol. 7, 21-44 (2001).

Opt. Lett.

Opt. Mater.

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, "Energy transfer between lanthanide and actinide ions in LiYF4," Opt. Mater. 6, 121-127 (1996).
[CrossRef]

Opt. Quantum Electron.

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, "Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass," Opt. Quantum Electron. 31, 1345-1346 (1999).
[CrossRef]

Phys. Rev. B

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorgé, "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60, 11380-11390 (1999).
[CrossRef]

Other

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley Interscience, 1994).

Ph. Thony, B. Ferrand, and E. Molva, "1.55 µm passively Q-switched microchip laser," in Advanced Solid State Lasers, W.R. Bosenberg and M.M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), pp. 327-329.

S. U. Alam, P. W. Turner, A. B. Grudinin, and J. Nilsson, "High energy, high repetition rate, tunable Er-Yb-codoped Q-switched fibre laser," in Conference on Lasers and Electro-Optics Vol. 56 of OSA Trans in Optics and Photonics Series (Optical Society of America, 2001), pp. 218-219.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy-level diagram and energy-transfer processes in Yb 3 + Er 3 + -codoped systems.

Fig. 2
Fig. 2

F 7 2 2 F 5 2 2 absorption and emission spectra of Yb 3 + and I 15 2 4 I 11 2 4 absorption spectrum of Er 3 + used to calculate the first energy-transfer microparameters.

Fig. 3
Fig. 3

I 15 2 4 I 13 2 4 absorption and emission spectra of Er 3 + and I 13 2 4 I 9 2 4 ESA spectrum of Er 3 + used to calculate the cooperative upconversion microparameters.

Fig. 4
Fig. 4

F 5 2 2 F 7 2 2 emission spectrum of Yb 3 + and I 13 2 4 F 9 2 4 ESA spectrum of Er 3 + used to calculate the secondary energy-transfer microparameter.

Fig. 5
Fig. 5

Variation of the parameter W 1 of the first Yb 3 + -to- Er 3 + energy transfer as a function of the Yb 3 + doping concentration for various values of R. Solid lines correspond to the values given by Eq. (9) and diamonds are values directly calculated with Eqs. (1, 2, 3, 4, 5, 6, 7).

Fig. 6
Fig. 6

Experimental setup used for the EYDCF laser measurements. HR, high reflectivity; HT, high transmission.

Fig. 7
Fig. 7

Evolution of the calculated value of R as a function of the Yb 3 + doping concentration for a theoretical maximum laser slope efficiency of 50%.

Tables (3)

Tables Icon

Table 1 Summary of the Measured and Calculated Yb 3 + Fluorescence Lifetimes and First Yb 3 + - to - Er 3 + Energy-Transfer Parameter of the Investigated Fiber Samples

Tables Icon

Table 2 Comparison of Measured Cooperative Upconversion and Energy-Transfer Parameters from Earlier Experiments with the Corresponding Calculated Values Obtained with the Method Developed in the Work

Tables Icon

Table 3 Measured and Predicted Maximum Slope Efficiencies of the Investigated Fiber Samples

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I D ( t ) = I 0 exp ( t τ D γ t 1 2 K t ) ,
γ = 4 π 3 2 3 N A C D A 1 2 ,
C D X = 3 c 8 π 4 n 2 σ D em ( λ ) σ X abs ( λ ) d λ ,
C D D = C Yb Yb = 174.7 × 10 40 cm 6 s 1 ,
C D A = C Yb Er = 22.3 × 10 40 cm 6 s 1 .
K H = π ( 2 π 3 ) 5 2 C D A 1 2 C D D 1 2 N A N D .
K ¯ = τ f 1 τ D 1 ,
τ f = 1 I 0 0 + I D ( t ) d t ,
W = K ¯ N A .
W 1 = C N Yb + W 0 .
W 1 ( R , N Yb ) = [ C 0 + C 1 exp ( R R 0 ) ] N Yb + W 0 ,
C 0 = 14.2 × 10 38 cm 6 s 1 , C 1 = 6.3 × 10 38 cm 6 s 1 ,
R 0 = 8.4 , W 0 = 3.74 × 10 18 cm 3 s 1 .
η laser = η q × η t , η t = τ Yb τ f τ Yb ,

Metrics