Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Microscopic analysis of extreme nonlinear optics in semiconductor nanostructures

Not Accessible

Your library or personal account may give you access

Abstract

A microscopic analysis is presented for the extreme nonlinear optical response of semiconductor quantum wells and wires after intense excitation with femtosecond laser pulses. In this regime, the light–matter interaction is the dominant eneregy scale, leading to a number of interesting effects such as carrier-wave Rabi flopping, Mollow splitting, and the creation of higher harmonics. The results presented here were obtained by evaluating the semiconductor Bloch equations without the rotating wave approximation. The electronic dispersion of semiconductor nanostructures is shown to have a characteristic influence on the extreme nonlinear optical response, whereas the relative importance of the carrier Coulomb interaction decreases with increasing excitation intensities.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Chirped-pulse control of carriers in semiconductors: the role of many-body effects

Boris D. Fainberg, B. Levinsky, and V. A. Gorbunov
J. Opt. Soc. Am. B 22(12) 2715-2727 (2005)

Theory of solid-state laser mode locking by coherent semiconductor quantum-well absorbers

V. P. Kalosha, M. Müller, and J. Herrmann
J. Opt. Soc. Am. B 16(2) 323-338 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.