Abstract

The theoretical model on gain-clamped semiconductor optical amplifiers (GC-SOAs) based on compensating light has been constructed. Using this model, the effects of insertion position and peak reflectivity of the fiber Bragg grating (FBG) on the gain clamping and noise figure (NF) characteristics of GC-SOA are analyzed. The results show that the effect of the FBG insertion position on gain clamping is slight, but the lower NF can be obtained for input FBG-type GC-SOA; when the FBG peak wavelength is designed to close the signal wavelength, the gain clamping and NF characteristics that can be reached are better. Further study shows that, with the increased peak reflectivity of the FBG, the critical input power is broadened and the gain tends to be varied slowly; the larger bias current is helpful to raise gain and decrease the noise figure but is harmful to a gain flatness characteristic.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Blank and J. D. Cox, 'Optical time domain reflectomeory on optical amplifiers systems,' J. Lightwave Technol. 7, 1549-1555 (1989).
    [CrossRef]
  2. S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991).
    [CrossRef]
  3. G. Toptchiyski, S. Kindt, K. Petermann, E. Hilliger, S. Diez, and H. Weber, 'Time-domain modeling of semiconductor optical amplifiers for OTDM applications,' J. Lightwave Technol. 17, 2577-2583 (1999).
    [CrossRef]
  4. D. Cassioli, S. Scotti, and A. Mecozzi, 'A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,' IEEE J. Quantum Electron. 36, 1072-1080 (2000).
    [CrossRef]
  5. A. Reale, A. D. Carlo, and P. Lugli, 'Gain dynamics in traveling-wave semiconductor optical amplifiers,' IEEE J. Quantum Electron. 7, 293-299 (2001).
    [CrossRef]
  6. C. P. Larsen and M. Gustavsson, 'Linear crosstalk in 4×4 semiconductor optical amplifier gate switch matrix,' J. Lightwave Technol. 15, 1865-1870 (1997).
    [CrossRef]
  7. Y. Maeno, Y. Suemura, A. Tajima, and N. Henmi, 'A 2.56Tb/s multiwavelength and scalable switch-fabric for fast packet-switching networks,' IEEE Photon. Technol. Lett. 10, 1180-1182 (1998).
    [CrossRef]
  8. A. Uskov, J. Mork, and J. Mark, 'Theory of short-pulse gain saturation in semiconductor laser amplifiers,' IEEE Photon. Technol. Lett. 4, 443-446 (1992).
    [CrossRef]
  9. J. Sun, G. Morthier, and R. Baets, 'Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,' IEEE J. Sel. Top. Quantum Electron. 3, 1162-1167 (1997).
    [CrossRef]
  10. G. Morthier and J. Sun, 'Repetition-rate dependence of the saturation power of gain-clamped semiconductor optical amplifiers,' IEEE Photon. Technol. Lett. 10, 282-284 (1998).
    [CrossRef]
  11. G. Giuliani and D. D'Alessandro, 'Noise analysis of conventional and gain-clamped semiconductor optical amplifiers,' J. Lightwave Technol. 18, 1256-1263 (2000).
    [CrossRef]
  12. J. Park, X. Li, and W. P. Huang, 'Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,' IEEE J. Quantum Electron. 39, 1415-1423 (2003).
    [CrossRef]
  13. B. Bauer, F. Henry, and R. Schimpe, 'Gain stabilization of a semiconductor optical amplifier by distributed feedback,' IEEE Photon. Technol. Lett. 6, 182-185 (1994).
    [CrossRef]
  14. J. Park, X. Li, and W. P. Huang, 'Gain clamping in semiconductor optical amplifiers with second-order index-coupled DFB gratings,' IEEE J. Quantum Electron. 41, 366-375 (2005).
    [CrossRef]
  15. H. H. Lee, D. Lee, and H. S. Chung, 'A gain-clamped-semiconductor-optical-amplifier combined with a distributed Raman-fiber-amplifer: a good candidate as an inline amplifier for WDM networks,' Opt. Commun. 229, 249-252 (2004).
    [CrossRef]
  16. M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
    [CrossRef]
  17. S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, 'Gain clamping in two-stage L-band EDFA using a broadband FBG,' IEEE Photon. Technol. Lett. 16, 422-424 (2004).
    [CrossRef]
  18. J. T. Ahn, J. M. Lee, and K. H. Kim, 'Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission,' Electron. Lett. 39, 1140-1141 (2003).
    [CrossRef]
  19. M. J. Connelly, 'Wideband semiconductor optical amplifier steady-state numerical model,' IEEE J. Quantum Electron. 37, 439-447 (2001).
    [CrossRef]
  20. C. Y. Jin, Y. Z. Huang, L. J. Yu, and S. L. Deng, 'Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field,' IEEE J. Quantum Electron. 40, 513-518 (2004).
    [CrossRef]
  21. P. M. Gong, J. T. Hsieh, S. L. Lee, and J. Wu, 'Theoretical analysis of wavelength conversion based on four-wave mixing in light-holding SOAs,' IEEE J. Quantum Electron. 40, 31-40 (2004).
    [CrossRef]
  22. P.-L. Li, D.-X. Huang, X.-L. Zhang, J. Chun, and L.-R. Huang, 'Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser,' IEEE J. Quantum Electron. 41, 581-588 (2005).
    [CrossRef]
  23. L. Thylen, 'Amplified spontaneous emission and gain characteristics of Fabry-Perot and traveling wave type semiconductor laser amplifiers,' IEEE J. Quantum Electron. 24, 1532-1537 (1988).
    [CrossRef]
  24. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).

2005 (2)

J. Park, X. Li, and W. P. Huang, 'Gain clamping in semiconductor optical amplifiers with second-order index-coupled DFB gratings,' IEEE J. Quantum Electron. 41, 366-375 (2005).
[CrossRef]

P.-L. Li, D.-X. Huang, X.-L. Zhang, J. Chun, and L.-R. Huang, 'Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser,' IEEE J. Quantum Electron. 41, 581-588 (2005).
[CrossRef]

2004 (4)

C. Y. Jin, Y. Z. Huang, L. J. Yu, and S. L. Deng, 'Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field,' IEEE J. Quantum Electron. 40, 513-518 (2004).
[CrossRef]

P. M. Gong, J. T. Hsieh, S. L. Lee, and J. Wu, 'Theoretical analysis of wavelength conversion based on four-wave mixing in light-holding SOAs,' IEEE J. Quantum Electron. 40, 31-40 (2004).
[CrossRef]

H. H. Lee, D. Lee, and H. S. Chung, 'A gain-clamped-semiconductor-optical-amplifier combined with a distributed Raman-fiber-amplifer: a good candidate as an inline amplifier for WDM networks,' Opt. Commun. 229, 249-252 (2004).
[CrossRef]

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, 'Gain clamping in two-stage L-band EDFA using a broadband FBG,' IEEE Photon. Technol. Lett. 16, 422-424 (2004).
[CrossRef]

2003 (2)

J. T. Ahn, J. M. Lee, and K. H. Kim, 'Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission,' Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

J. Park, X. Li, and W. P. Huang, 'Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,' IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

2002 (1)

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

2001 (2)

M. J. Connelly, 'Wideband semiconductor optical amplifier steady-state numerical model,' IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

A. Reale, A. D. Carlo, and P. Lugli, 'Gain dynamics in traveling-wave semiconductor optical amplifiers,' IEEE J. Quantum Electron. 7, 293-299 (2001).
[CrossRef]

2000 (2)

D. Cassioli, S. Scotti, and A. Mecozzi, 'A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,' IEEE J. Quantum Electron. 36, 1072-1080 (2000).
[CrossRef]

G. Giuliani and D. D'Alessandro, 'Noise analysis of conventional and gain-clamped semiconductor optical amplifiers,' J. Lightwave Technol. 18, 1256-1263 (2000).
[CrossRef]

1999 (1)

1998 (2)

Y. Maeno, Y. Suemura, A. Tajima, and N. Henmi, 'A 2.56Tb/s multiwavelength and scalable switch-fabric for fast packet-switching networks,' IEEE Photon. Technol. Lett. 10, 1180-1182 (1998).
[CrossRef]

G. Morthier and J. Sun, 'Repetition-rate dependence of the saturation power of gain-clamped semiconductor optical amplifiers,' IEEE Photon. Technol. Lett. 10, 282-284 (1998).
[CrossRef]

1997 (2)

J. Sun, G. Morthier, and R. Baets, 'Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,' IEEE J. Sel. Top. Quantum Electron. 3, 1162-1167 (1997).
[CrossRef]

C. P. Larsen and M. Gustavsson, 'Linear crosstalk in 4×4 semiconductor optical amplifier gate switch matrix,' J. Lightwave Technol. 15, 1865-1870 (1997).
[CrossRef]

1994 (1)

B. Bauer, F. Henry, and R. Schimpe, 'Gain stabilization of a semiconductor optical amplifier by distributed feedback,' IEEE Photon. Technol. Lett. 6, 182-185 (1994).
[CrossRef]

1992 (1)

A. Uskov, J. Mork, and J. Mark, 'Theory of short-pulse gain saturation in semiconductor laser amplifiers,' IEEE Photon. Technol. Lett. 4, 443-446 (1992).
[CrossRef]

1991 (1)

S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991).
[CrossRef]

1989 (1)

L. C. Blank and J. D. Cox, 'Optical time domain reflectomeory on optical amplifiers systems,' J. Lightwave Technol. 7, 1549-1555 (1989).
[CrossRef]

1988 (1)

L. Thylen, 'Amplified spontaneous emission and gain characteristics of Fabry-Perot and traveling wave type semiconductor laser amplifiers,' IEEE J. Quantum Electron. 24, 1532-1537 (1988).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).

Ahmad, H.

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, 'Gain clamping in two-stage L-band EDFA using a broadband FBG,' IEEE Photon. Technol. Lett. 16, 422-424 (2004).
[CrossRef]

Ahn, J. T.

J. T. Ahn, J. M. Lee, and K. H. Kim, 'Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission,' Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

Baets, R.

J. Sun, G. Morthier, and R. Baets, 'Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,' IEEE J. Sel. Top. Quantum Electron. 3, 1162-1167 (1997).
[CrossRef]

Bauer, B.

B. Bauer, F. Henry, and R. Schimpe, 'Gain stabilization of a semiconductor optical amplifier by distributed feedback,' IEEE Photon. Technol. Lett. 6, 182-185 (1994).
[CrossRef]

Blank, L. C.

L. C. Blank and J. D. Cox, 'Optical time domain reflectomeory on optical amplifiers systems,' J. Lightwave Technol. 7, 1549-1555 (1989).
[CrossRef]

Carlo, A. D.

A. Reale, A. D. Carlo, and P. Lugli, 'Gain dynamics in traveling-wave semiconductor optical amplifiers,' IEEE J. Quantum Electron. 7, 293-299 (2001).
[CrossRef]

Cassioli, D.

D. Cassioli, S. Scotti, and A. Mecozzi, 'A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,' IEEE J. Quantum Electron. 36, 1072-1080 (2000).
[CrossRef]

Chun, J.

P.-L. Li, D.-X. Huang, X.-L. Zhang, J. Chun, and L.-R. Huang, 'Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser,' IEEE J. Quantum Electron. 41, 581-588 (2005).
[CrossRef]

Chung, H. S.

H. H. Lee, D. Lee, and H. S. Chung, 'A gain-clamped-semiconductor-optical-amplifier combined with a distributed Raman-fiber-amplifer: a good candidate as an inline amplifier for WDM networks,' Opt. Commun. 229, 249-252 (2004).
[CrossRef]

Connelly, M. J.

M. J. Connelly, 'Wideband semiconductor optical amplifier steady-state numerical model,' IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

Cox, J. D.

L. C. Blank and J. D. Cox, 'Optical time domain reflectomeory on optical amplifiers systems,' J. Lightwave Technol. 7, 1549-1555 (1989).
[CrossRef]

Crottini, A.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Dagens, B.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

D'Alessandro, D.

Deng, S. L.

C. Y. Jin, Y. Z. Huang, L. J. Yu, and S. L. Deng, 'Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field,' IEEE J. Quantum Electron. 40, 513-518 (2004).
[CrossRef]

Deveaud, B.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Diez, S.

Dupertuis, M. A.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).

Edagawa, N.

S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991).
[CrossRef]

Emery, J.-Y.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Giuliani, G.

Gong, P. M.

P. M. Gong, J. T. Hsieh, S. L. Lee, and J. Wu, 'Theoretical analysis of wavelength conversion based on four-wave mixing in light-holding SOAs,' IEEE J. Quantum Electron. 40, 31-40 (2004).
[CrossRef]

Gustavsson, M.

C. P. Larsen and M. Gustavsson, 'Linear crosstalk in 4×4 semiconductor optical amplifier gate switch matrix,' J. Lightwave Technol. 15, 1865-1870 (1997).
[CrossRef]

Harun, S. W.

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, 'Gain clamping in two-stage L-band EDFA using a broadband FBG,' IEEE Photon. Technol. Lett. 16, 422-424 (2004).
[CrossRef]

Henmi, N.

Y. Maeno, Y. Suemura, A. Tajima, and N. Henmi, 'A 2.56Tb/s multiwavelength and scalable switch-fabric for fast packet-switching networks,' IEEE Photon. Technol. Lett. 10, 1180-1182 (1998).
[CrossRef]

Henry, F.

B. Bauer, F. Henry, and R. Schimpe, 'Gain stabilization of a semiconductor optical amplifier by distributed feedback,' IEEE Photon. Technol. Lett. 6, 182-185 (1994).
[CrossRef]

Hilliger, E.

Hsieh, J. T.

P. M. Gong, J. T. Hsieh, S. L. Lee, and J. Wu, 'Theoretical analysis of wavelength conversion based on four-wave mixing in light-holding SOAs,' IEEE J. Quantum Electron. 40, 31-40 (2004).
[CrossRef]

Huang, D.-X.

P.-L. Li, D.-X. Huang, X.-L. Zhang, J. Chun, and L.-R. Huang, 'Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser,' IEEE J. Quantum Electron. 41, 581-588 (2005).
[CrossRef]

Huang, L.-R.

P.-L. Li, D.-X. Huang, X.-L. Zhang, J. Chun, and L.-R. Huang, 'Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser,' IEEE J. Quantum Electron. 41, 581-588 (2005).
[CrossRef]

Huang, W. P.

J. Park, X. Li, and W. P. Huang, 'Gain clamping in semiconductor optical amplifiers with second-order index-coupled DFB gratings,' IEEE J. Quantum Electron. 41, 366-375 (2005).
[CrossRef]

J. Park, X. Li, and W. P. Huang, 'Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,' IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

Huang, Y. Z.

C. Y. Jin, Y. Z. Huang, L. J. Yu, and S. L. Deng, 'Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field,' IEEE J. Quantum Electron. 40, 513-518 (2004).
[CrossRef]

Jin, C. Y.

C. Y. Jin, Y. Z. Huang, L. J. Yu, and S. L. Deng, 'Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field,' IEEE J. Quantum Electron. 40, 513-518 (2004).
[CrossRef]

Kappei, L.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Kim, K. H.

J. T. Ahn, J. M. Lee, and K. H. Kim, 'Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission,' Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

Kindt, S.

Kuroda, K.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Larsen, C. P.

C. P. Larsen and M. Gustavsson, 'Linear crosstalk in 4×4 semiconductor optical amplifier gate switch matrix,' J. Lightwave Technol. 15, 1865-1870 (1997).
[CrossRef]

Lee, D.

H. H. Lee, D. Lee, and H. S. Chung, 'A gain-clamped-semiconductor-optical-amplifier combined with a distributed Raman-fiber-amplifer: a good candidate as an inline amplifier for WDM networks,' Opt. Commun. 229, 249-252 (2004).
[CrossRef]

Lee, H. H.

H. H. Lee, D. Lee, and H. S. Chung, 'A gain-clamped-semiconductor-optical-amplifier combined with a distributed Raman-fiber-amplifer: a good candidate as an inline amplifier for WDM networks,' Opt. Commun. 229, 249-252 (2004).
[CrossRef]

Lee, J. M.

J. T. Ahn, J. M. Lee, and K. H. Kim, 'Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission,' Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

Lee, S. L.

P. M. Gong, J. T. Hsieh, S. L. Lee, and J. Wu, 'Theoretical analysis of wavelength conversion based on four-wave mixing in light-holding SOAs,' IEEE J. Quantum Electron. 40, 31-40 (2004).
[CrossRef]

Li, P.-L.

P.-L. Li, D.-X. Huang, X.-L. Zhang, J. Chun, and L.-R. Huang, 'Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser,' IEEE J. Quantum Electron. 41, 581-588 (2005).
[CrossRef]

Li, X.

J. Park, X. Li, and W. P. Huang, 'Gain clamping in semiconductor optical amplifiers with second-order index-coupled DFB gratings,' IEEE J. Quantum Electron. 41, 366-375 (2005).
[CrossRef]

J. Park, X. Li, and W. P. Huang, 'Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,' IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

Lugli, P.

A. Reale, A. D. Carlo, and P. Lugli, 'Gain dynamics in traveling-wave semiconductor optical amplifiers,' IEEE J. Quantum Electron. 7, 293-299 (2001).
[CrossRef]

Maeno, Y.

Y. Maeno, Y. Suemura, A. Tajima, and N. Henmi, 'A 2.56Tb/s multiwavelength and scalable switch-fabric for fast packet-switching networks,' IEEE Photon. Technol. Lett. 10, 1180-1182 (1998).
[CrossRef]

Mark, J.

A. Uskov, J. Mork, and J. Mark, 'Theory of short-pulse gain saturation in semiconductor laser amplifiers,' IEEE Photon. Technol. Lett. 4, 443-446 (1992).
[CrossRef]

Marti, D.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Mecozzi, A.

D. Cassioli, S. Scotti, and A. Mecozzi, 'A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,' IEEE J. Quantum Electron. 36, 1072-1080 (2000).
[CrossRef]

Mork, J.

A. Uskov, J. Mork, and J. Mark, 'Theory of short-pulse gain saturation in semiconductor laser amplifiers,' IEEE Photon. Technol. Lett. 4, 443-446 (1992).
[CrossRef]

Morthier, G.

G. Morthier and J. Sun, 'Repetition-rate dependence of the saturation power of gain-clamped semiconductor optical amplifiers,' IEEE Photon. Technol. Lett. 10, 282-284 (1998).
[CrossRef]

J. Sun, G. Morthier, and R. Baets, 'Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,' IEEE J. Sel. Top. Quantum Electron. 3, 1162-1167 (1997).
[CrossRef]

Nomura, M.-S.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Park, J.

J. Park, X. Li, and W. P. Huang, 'Gain clamping in semiconductor optical amplifiers with second-order index-coupled DFB gratings,' IEEE J. Quantum Electron. 41, 366-375 (2005).
[CrossRef]

J. Park, X. Li, and W. P. Huang, 'Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,' IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

Petermann, K.

Poopalan, P.

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, 'Gain clamping in two-stage L-band EDFA using a broadband FBG,' IEEE Photon. Technol. Lett. 16, 422-424 (2004).
[CrossRef]

Reale, A.

A. Reale, A. D. Carlo, and P. Lugli, 'Gain dynamics in traveling-wave semiconductor optical amplifiers,' IEEE J. Quantum Electron. 7, 293-299 (2001).
[CrossRef]

Ryu, S.

S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991).
[CrossRef]

Salleras, F.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Schimpe, R.

B. Bauer, F. Henry, and R. Schimpe, 'Gain stabilization of a semiconductor optical amplifier by distributed feedback,' IEEE Photon. Technol. Lett. 6, 182-185 (1994).
[CrossRef]

Scotti, S.

D. Cassioli, S. Scotti, and A. Mecozzi, 'A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,' IEEE J. Quantum Electron. 36, 1072-1080 (2000).
[CrossRef]

Shimura, T.

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Suemura, Y.

Y. Maeno, Y. Suemura, A. Tajima, and N. Henmi, 'A 2.56Tb/s multiwavelength and scalable switch-fabric for fast packet-switching networks,' IEEE Photon. Technol. Lett. 10, 1180-1182 (1998).
[CrossRef]

Sun, J.

G. Morthier and J. Sun, 'Repetition-rate dependence of the saturation power of gain-clamped semiconductor optical amplifiers,' IEEE Photon. Technol. Lett. 10, 282-284 (1998).
[CrossRef]

J. Sun, G. Morthier, and R. Baets, 'Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,' IEEE J. Sel. Top. Quantum Electron. 3, 1162-1167 (1997).
[CrossRef]

Taga, H.

S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991).
[CrossRef]

Tajima, A.

Y. Maeno, Y. Suemura, A. Tajima, and N. Henmi, 'A 2.56Tb/s multiwavelength and scalable switch-fabric for fast packet-switching networks,' IEEE Photon. Technol. Lett. 10, 1180-1182 (1998).
[CrossRef]

Tamchek, N.

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, 'Gain clamping in two-stage L-band EDFA using a broadband FBG,' IEEE Photon. Technol. Lett. 16, 422-424 (2004).
[CrossRef]

Thylen, L.

L. Thylen, 'Amplified spontaneous emission and gain characteristics of Fabry-Perot and traveling wave type semiconductor laser amplifiers,' IEEE J. Quantum Electron. 24, 1532-1537 (1988).
[CrossRef]

Toptchiyski, G.

Uskov, A.

A. Uskov, J. Mork, and J. Mark, 'Theory of short-pulse gain saturation in semiconductor laser amplifiers,' IEEE Photon. Technol. Lett. 4, 443-446 (1992).
[CrossRef]

Wakabayashi, H.

S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991).
[CrossRef]

Weber, H.

Wu, J.

P. M. Gong, J. T. Hsieh, S. L. Lee, and J. Wu, 'Theoretical analysis of wavelength conversion based on four-wave mixing in light-holding SOAs,' IEEE J. Quantum Electron. 40, 31-40 (2004).
[CrossRef]

Yamamoto, S.

S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991).
[CrossRef]

Yoshida, Y.

S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991).
[CrossRef]

Yu, L. J.

C. Y. Jin, Y. Z. Huang, L. J. Yu, and S. L. Deng, 'Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field,' IEEE J. Quantum Electron. 40, 513-518 (2004).
[CrossRef]

Zhang, X.-L.

P.-L. Li, D.-X. Huang, X.-L. Zhang, J. Chun, and L.-R. Huang, 'Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser,' IEEE J. Quantum Electron. 41, 581-588 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M.-S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J.-Y. Emery, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, 'Density clamping and longitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,' Appl. Phys. Lett. 81, 2692-2694 (2002).
[CrossRef]

Electron. Lett. (1)

J. T. Ahn, J. M. Lee, and K. H. Kim, 'Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission,' Electron. Lett. 39, 1140-1141 (2003).
[CrossRef]

IEEE J. Quantum Electron. (9)

M. J. Connelly, 'Wideband semiconductor optical amplifier steady-state numerical model,' IEEE J. Quantum Electron. 37, 439-447 (2001).
[CrossRef]

C. Y. Jin, Y. Z. Huang, L. J. Yu, and S. L. Deng, 'Detailed model and investigation of gain saturation and carrier spatial hole burning for a semiconductor optical amplifier with gain clamping by a vertical laser field,' IEEE J. Quantum Electron. 40, 513-518 (2004).
[CrossRef]

P. M. Gong, J. T. Hsieh, S. L. Lee, and J. Wu, 'Theoretical analysis of wavelength conversion based on four-wave mixing in light-holding SOAs,' IEEE J. Quantum Electron. 40, 31-40 (2004).
[CrossRef]

P.-L. Li, D.-X. Huang, X.-L. Zhang, J. Chun, and L.-R. Huang, 'Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser,' IEEE J. Quantum Electron. 41, 581-588 (2005).
[CrossRef]

L. Thylen, 'Amplified spontaneous emission and gain characteristics of Fabry-Perot and traveling wave type semiconductor laser amplifiers,' IEEE J. Quantum Electron. 24, 1532-1537 (1988).
[CrossRef]

J. Park, X. Li, and W. P. Huang, 'Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors,' IEEE J. Quantum Electron. 39, 1415-1423 (2003).
[CrossRef]

J. Park, X. Li, and W. P. Huang, 'Gain clamping in semiconductor optical amplifiers with second-order index-coupled DFB gratings,' IEEE J. Quantum Electron. 41, 366-375 (2005).
[CrossRef]

D. Cassioli, S. Scotti, and A. Mecozzi, 'A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,' IEEE J. Quantum Electron. 36, 1072-1080 (2000).
[CrossRef]

A. Reale, A. D. Carlo, and P. Lugli, 'Gain dynamics in traveling-wave semiconductor optical amplifiers,' IEEE J. Quantum Electron. 7, 293-299 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Sun, G. Morthier, and R. Baets, 'Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers,' IEEE J. Sel. Top. Quantum Electron. 3, 1162-1167 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

G. Morthier and J. Sun, 'Repetition-rate dependence of the saturation power of gain-clamped semiconductor optical amplifiers,' IEEE Photon. Technol. Lett. 10, 282-284 (1998).
[CrossRef]

Y. Maeno, Y. Suemura, A. Tajima, and N. Henmi, 'A 2.56Tb/s multiwavelength and scalable switch-fabric for fast packet-switching networks,' IEEE Photon. Technol. Lett. 10, 1180-1182 (1998).
[CrossRef]

A. Uskov, J. Mork, and J. Mark, 'Theory of short-pulse gain saturation in semiconductor laser amplifiers,' IEEE Photon. Technol. Lett. 4, 443-446 (1992).
[CrossRef]

B. Bauer, F. Henry, and R. Schimpe, 'Gain stabilization of a semiconductor optical amplifier by distributed feedback,' IEEE Photon. Technol. Lett. 6, 182-185 (1994).
[CrossRef]

S. W. Harun, N. Tamchek, P. Poopalan, and H. Ahmad, 'Gain clamping in two-stage L-band EDFA using a broadband FBG,' IEEE Photon. Technol. Lett. 16, 422-424 (2004).
[CrossRef]

J. Lightwave Technol. (5)

G. Giuliani and D. D'Alessandro, 'Noise analysis of conventional and gain-clamped semiconductor optical amplifiers,' J. Lightwave Technol. 18, 1256-1263 (2000).
[CrossRef]

C. P. Larsen and M. Gustavsson, 'Linear crosstalk in 4×4 semiconductor optical amplifier gate switch matrix,' J. Lightwave Technol. 15, 1865-1870 (1997).
[CrossRef]

L. C. Blank and J. D. Cox, 'Optical time domain reflectomeory on optical amplifiers systems,' J. Lightwave Technol. 7, 1549-1555 (1989).
[CrossRef]

S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, and H. Wakabayashi, 'Long-haul coherent optical fiber communication systems using optical amplifiers,' J. Lightwave Technol. 9, 251-260 (1991).
[CrossRef]

G. Toptchiyski, S. Kindt, K. Petermann, E. Hilliger, S. Diez, and H. Weber, 'Time-domain modeling of semiconductor optical amplifiers for OTDM applications,' J. Lightwave Technol. 17, 2577-2583 (1999).
[CrossRef]

Opt. Commun. (1)

H. H. Lee, D. Lee, and H. S. Chung, 'A gain-clamped-semiconductor-optical-amplifier combined with a distributed Raman-fiber-amplifer: a good candidate as an inline amplifier for WDM networks,' Opt. Commun. 229, 249-252 (2004).
[CrossRef]

Other (1)

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the input FBG-type GC-SOA. (b) Schematic of the output FBG-type GC-SOA.

Fig. 2
Fig. 2

(a) Variations of gain with the input power for the conventional SOA, input FBG-type, and output FBG-type GC-SOA, where the signal wavelength λ sig = 1545 nm , R max = 0.6 , and I = 100 mA . (b) Variations of NF with the input power for the conventional SOA, input FBG-type, and output FBG-type GC-SOA, where the signal wavelength λ sig = 1545 nm , R max = 0.6 , and I = 100 mA .

Fig. 3
Fig. 3

Power spectra outputs of the ASE of the input FBG-type GC-SOA for various input powers P in , where (a) P in = 20 dBm , (b) P in = 10 dBm , (c) P in = 0 dBm , and (d) P in = 10 dBm .

Fig. 4
Fig. 4

(a) Longitudinal distribution of the ASE power for the input FBG-type and output FBG-type GC-SOA. (b) Longitudinal distribution of the signal light power for the input FBG-type and output FBG-type GC-SOA. (c) Longitudinal distribution of the carrier density for the input FBG-type and output FBG-type GC-SOA.

Fig. 5
Fig. 5

(a) Variations of gain with the signal wavelength for the conventional SOA, input FBG-type, and output FBG-type GC-SOA, where the signal input power is fixed as 20 dBm . (b) Variations of the NF with the signal wavelength for the conventional SOA, input FBG-type, and output FBG-type GC-SOA, where the signal input power is fixed as 20 dBm .

Fig. 6
Fig. 6

Variations of gain with the input power for the input FBG-type GC-SOA for various equivalent peak reflectivities.

Fig. 7
Fig. 7

(a) Variations of gain with the input power for the input FBG-type GC-SOA under various biasing currents. (b) Variations of the NF with the input power for the input FBG-type GC-SOA under various biasing currents.

Tables (1)

Tables Icon

Table 1 Device Structure and Material Parameters Used in the Calculations

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

d A sig f d z = [ i β + 1 2 ( Γ g ( ν sig , N ) α ) ] A sig f ,
d A sig b d z = [ i β 1 2 ( Γ g ( ν sig , N ) α ) ] A sig b ,
n = n 0 + d n d N N ,
z = 0 : A sig f ( 0 ) = 1 R 1 ( ν sig ) A sig i ( 0 ) + R 1 ( ν sig ) A sig b ( 0 ) ,
z = L : A sig b ( L ) = R 2 ( ν sig ) A sig f ( L ) , A sig t ( L ) = 1 R 2 ( ν sig ) A sig f ( L ) ,
input FBG type : R 1 ( ν ) = R max exp [ ( ν ν 0 ) 2 Δ ν 2 ] + cons tan t , R 2 ( ν ) = cons tan t ,
output FBG type : R 1 ( ν ) = cons tan t , R 2 ( ν ) = R max exp [ ( ν ν 0 ) 2 Δ ν 2 ] + cons tan t ,
d P ASE f ( ν ) d z = [ Γ g ( ν , N ) α ] P ASE f ( ν ) + R sp ( ν , N ) ,
d P ASE b ( ν ) d z = [ Γ g ( ν , N ) α ] P ASE b ( ν ) R sp ( ν , N ) ,
R sp ( ν , N ) = Γ R s ( ν , N ) h ν ,
z = 0 : P ASE f ( 0 , ν ) = R 1 ( ν ) P ASE b ( 0 , ν ) ,
z = L : P ASE b ( L , ν ) = R 2 ( ν ) P ASE f ( L , ν ) , P ASE t ( L , ν ) = [ 1 R 2 ( ν ) ] P ASE f ( L , ν ) ,
I q V = γ ( N ) N ( z ) + Γ g ( ν sig , N ) P sig ( z ) A cross h ν sig + 2 Γ g ( ν , N ) P ASE ( z , ν ) A cross h ν d ν ,
γ ( N ) = A + B N + C N 2 ,
g ( ν , N ) = R s ( ν , N ) R a ( ν , N ) ,
R s ( ν , N ) = c 2 4 2 π 3 2 n 1 2 τ ν 2 [ 2 m e m h h ( m e + m h h ) ] 3 2 E g h ν E g ( N ) h f c ( ν ) [ 1 f ν ( ν ) ]
× [ 2 T 0 1 + ( 2 π T 0 ) 2 ( ν ν ) 2 ] d ν ,
R a ( ν , N ) = c 2 4 2 π 3 2 n 1 2 τ ν 2 [ 2 m e m h h ( m e + m h h ) ] 3 2 E g h ν E g ( N ) h f ν ( ν ) [ 1 f c ( ν ) ]
× [ 2 T 0 1 + ( 2 π T 0 ) 2 ( ν ν ) 2 ] d ν ,
E g ( N ) = E g 0 C BGR N 1 3 ,
NF = SNR in SNR out ,
NF = NF 1 + NF 2 1 G 1 + NF 3 1 G 1 G 2 + + NF M 1 G 1 G 2 G M 1 ,
NF j = 2 n sp ( j , ν ) ( G j 1 ) G j + 1 G j ,
n sp ( j , ν ) = Γ R s ( j , ν ) Γ R s ( j , ν ) Γ R a ( j , ν ) α .

Metrics