Abstract

A conventional optical superlens for imaging beyond the diffraction limit produces images only in the near-field zone of the superlens. In contrast, an optical far-field superlens (FSL) device has a remarkable transmission property that leads to a one-to-one relationship between the far-field and the near-field angular spectra. This property makes the device suitable for imaging beyond the diffraction limit from far-field measurement. This specific FSL is composed of a properly designed periodically corrugated metallic slab-based superlens. Through the numerical design and parameter study, we show that the transmission property of this FSL is based on a specific strong-broadband wavenumber excitation of surface-plasmon polaritons supported by the nanostructured metallic grating.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
    [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
    [CrossRef]
  4. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
    [CrossRef]
  5. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
    [CrossRef]
  6. S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).
  7. S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).
  8. V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).
    [CrossRef]
  9. I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
    [CrossRef]
  10. I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
    [CrossRef]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
  12. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous couple-wave analysis for surface relief gratings-enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
  13. P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  14. R. Carminati, M. Neito-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A 15, 706-712 (1998).
  15. R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
    [CrossRef]
  16. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.
  17. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
    [CrossRef]
  18. V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  19. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef]
  20. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  21. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
    [CrossRef]
  22. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).
  23. D. R. Smith, "How to build a superlens," Science 308, 502-503 (2005).
    [CrossRef]
  24. P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
    [CrossRef]
  25. Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
    [CrossRef]
  26. N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).
  27. A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver film via surface plasmon-polaritons", Opt. Express 12, 5881-5886 (2004).
    [CrossRef]
  28. I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
    [CrossRef]
  29. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef]
  30. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef]
  31. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
    [CrossRef]

2005

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef]

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

D. R. Smith, "How to build a superlens," Science 308, 502-503 (2005).
[CrossRef]

V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005).
[CrossRef]

V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

2004

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver film via surface plasmon-polaritons", Opt. Express 12, 5881-5886 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

2003

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

2002

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).
[CrossRef]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef]

2000

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef]

1998

1997

J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

1995

1972

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver film via surface plasmon-polaritons", Opt. Express 12, 5881-5886 (2004).
[CrossRef]

Blaikie, R. J.

Cai, W.

Cao, Q.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

Carminati, R

J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Carminati, R.

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

R. Carminati, M. Neito-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A 15, 706-712 (1998).

Chettiar, U.

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

Drachev, V. P.

Durant, S.

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

Elliot, J.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef]

Elliott, J.

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef]

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

Foteinopolou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Gaylord, T. K.

Giannattasio, A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.

Grann, E. B.

Greffet, J.-J.

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

R. Carminati, M. Neito-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A 15, 706-712 (1998).

J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Gryczynski, I.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Gryczynski, Z.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Hooper, I. R.

Joannopoulos, J. D.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Johnson, S. G.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Kildishev, A. V.

Lakowicz, J. R.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

Lauer, V.

V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef]

Liu, Z.

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

Liu, Z. W.

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).

Lu, W. T.

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Luo, C. Y.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Malicka, J.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Melville, D. O.

Moharam, M. G.

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

Narimanov, E. E.

Neito-Vesperinas, M.

Nieto-Vesperinas, M.

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

Nowaczyk, K.

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Parimi, P. V.

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Pendry, J. B.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 746-754 (2003).

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef]

Podolskiy, V. A.

Pommet, D. A.

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Saenz, J. J.

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

Sarychev, A. K.

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef]

Smith, D. R.

D. R. Smith, "How to build a superlens," Science 308, 502-503 (2005).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef]

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

Sridhar, S.

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef]

Vodo, P.

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Wurtz, G. A.

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

Yen, T.-J.

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).

Yuan, H.-K.

Zayats, A. V.

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef]

N. Fang, Z. W. Liu, T.-J. Yen, and X. Zhang, "Regenerating evanescent waves from a silver superlens," Opt. Express 11, 682-687 (2003).

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

Appl. Phys. Lett.

Z. W. Liu, N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

J. Microsc.

V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz, "Effects of sample thickness on the optical properties of surface plasmon-coupled emission," J. Phys. Chem. B 108, 12073-12083 (2004).
[CrossRef]

Nature (London)

P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--Imaging by flat lens using negative refraction", Nature (London) 426, 404-404 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

R. Carminati, J. J. Saenz, J.-J. Greffet, and M. Nieto-Vesperinas, "Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components," Phys. Rev. A 62, 012712 (2000).
[CrossRef]

Phys. Rev. B

I. I. Smolyaninov, C. C. Davis, J. Elliott, G. A. Wurtz, and A. V. Zayats, "Super-resolution optical microscopy based on photonic crystal materials," Phys. Rev. B 72, 085442 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonics crystals," Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

Phys. Rev. Lett.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, "Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons," Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, "Subwavelength resolution in a two-dimensional-photonic-crystal based superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef]

Prog. Surf. Sci.

J.-J. Greffet and R Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997).
[CrossRef]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2005).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index refraction," Science 292, 77-79 (2001).
[CrossRef]

D. R. Smith, "How to build a superlens," Science 308, 502-503 (2005).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Far-field superlens theory for optical imaging beyond the diffraction limit," www.arxiv.org, physics/0601163 (2006).

S. Durant, Z. Liu, N. Fang, and X. Zhang, "Theory of optical imaging beyond the diffraction limit with a far-field superlens," in Plasmonics: Metallic Nanostructures and Their Optical Properties IV, M. I. Stockman, ed. Proc. SPIE6323, 63231H (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics