Abstract

Generalizing soliton description using spatiotemporal wave variables, we identify and experimentally validate the nonlinearity supporting quasi-steady-state solitons in biased photorefractive crystals for the one-dimensional case, the transient counterpart of the explicit one-dimensional screening soliton theory. The approach leads to a non-Kerr-like spatially local exponential nonlinearity and explicitly provides soliton existence conditions. These find quantitative agreement with a series of experiments in potassium lithium tantalate niobate and reproduce previously described transient behavior.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
    [CrossRef] [PubMed]
  2. G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
    [CrossRef] [PubMed]
  3. B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, and G. Salamo, "Self-trapping of optical beams in photorefractive media," J. Opt. Soc. Am. B 10, 446-453 (1993).
    [CrossRef]
  4. G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
    [CrossRef] [PubMed]
  5. D. N. Christodoulides and M. I. Carvalho, "Compression, self-bending, and collapse of Gaussian beams in photorefractive crystals," Opt. Lett. 19, 1714-1716 (1994).
    [CrossRef] [PubMed]
  6. M. Segev, B. Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp, "Stability of photorefractive spatial solitons," Opt. Lett. 19, 1296-1298 (1994).
    [CrossRef] [PubMed]
  7. A. Zozulya and D. Anderson, "Nonstationary self-focusing in photorefractive media," Opt. Lett. 20, 837-839 (1995).
    [CrossRef] [PubMed]
  8. N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons," Opt. Commun. 145, 393-400 (1998).
    [CrossRef]
  9. M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, "Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides," Phys. Rev. E 64, 036613 (2001).
    [CrossRef]
  10. M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, "Soliton-induced waveguides in an organic photorefractive glass," Opt. Lett. 30, 519-521 (2005).
    [CrossRef] [PubMed]
  11. G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
    [CrossRef] [PubMed]
  12. M. Chauvet, "Temporal analysis of open-circuit dark photovoltaic spatial solitons," J. Opt. Soc. Am. B 20, 2515-2522 (2003).
    [CrossRef]
  13. M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
    [CrossRef]
  14. E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
    [CrossRef]
  15. M. F. Shih, M. Segev, and G. J. Salamo, "Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons," Opt. Lett. 21, 931-933 (1996).
    [CrossRef] [PubMed]
  16. J. Petter, C. Denz, A. Stepken, and F. Kaiser, "Anisotropic waveguides induced by photorefractive (2+1)D solitons," J. Opt. Soc. Am. B 19, 1145-1149 (2002).
    [CrossRef]
  17. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
    [CrossRef] [PubMed]
  18. S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady-state conditions," Opt. Commun. 118, 569-576 (1995).
    [CrossRef]
  19. M. Segev, M. F. Shih, and G. C. Valley, "Photorefractive screening solitons of high and low intensity," J. Opt. Soc. Am. B 13, 706-718 (1996).
    [CrossRef]
  20. M. Morin, G. Duree, G. Salamo, and M. Segev, "Waveguides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
    [CrossRef] [PubMed]
  21. Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
    [CrossRef]
  22. C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
    [CrossRef]
  23. Locality allows extension to incoherent schemes.
  24. See S. Trillo and W. Torruellas, eds., Spatial Solitons (Springer, 2001), pp. 211-245.
  25. E. DelRe, A. D'Ercole, and A. J. Agranat, "Emergence of linear wave segments and predictable traits in saturated nonlinear media," Opt. Lett. 28, 260-262 (2003).
    [CrossRef] [PubMed]
  26. E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, "One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate," Opt. Lett. 23, 421-423 (1998).
    [CrossRef]

2005 (1)

2003 (3)

2002 (2)

2001 (1)

M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, "Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides," Phys. Rev. E 64, 036613 (2001).
[CrossRef]

1999 (1)

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

1998 (2)

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, "One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate," Opt. Lett. 23, 421-423 (1998).
[CrossRef]

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons," Opt. Commun. 145, 393-400 (1998).
[CrossRef]

1997 (1)

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

1996 (2)

1995 (4)

M. Morin, G. Duree, G. Salamo, and M. Segev, "Waveguides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
[CrossRef] [PubMed]

S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady-state conditions," Opt. Commun. 118, 569-576 (1995).
[CrossRef]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
[CrossRef] [PubMed]

A. Zozulya and D. Anderson, "Nonstationary self-focusing in photorefractive media," Opt. Lett. 20, 837-839 (1995).
[CrossRef] [PubMed]

1994 (4)

1993 (2)

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, and G. Salamo, "Self-trapping of optical beams in photorefractive media," J. Opt. Soc. Am. B 10, 446-453 (1993).
[CrossRef]

1992 (1)

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Agranat, A. J.

Anderson, D.

Asaro, M.

Belic, M. R.

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

Carvalho, M. I.

Chauvet, M.

Chen, Z.

Christodoulides, D. N.

S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady-state conditions," Opt. Commun. 118, 569-576 (1995).
[CrossRef]

D. N. Christodoulides and M. I. Carvalho, "Compression, self-bending, and collapse of Gaussian beams in photorefractive crystals," Opt. Lett. 19, 1714-1716 (1994).
[CrossRef] [PubMed]

Crosignani, B.

E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
[CrossRef]

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, "One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate," Opt. Lett. 23, 421-423 (1998).
[CrossRef]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp, "Stability of photorefractive spatial solitons," Opt. Lett. 19, 1296-1298 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, and G. Salamo, "Self-trapping of optical beams in photorefractive media," J. Opt. Soc. Am. B 10, 446-453 (1993).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Dari-Salisburgo, C.

C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
[CrossRef]

DelRe, E.

Denz, C.

J. Petter, C. Denz, A. Stepken, and F. Kaiser, "Anisotropic waveguides induced by photorefractive (2+1)D solitons," J. Opt. Soc. Am. B 19, 1145-1149 (2002).
[CrossRef]

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

D'Ercole, A.

Di Porto, P.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp, "Stability of photorefractive spatial solitons," Opt. Lett. 19, 1296-1298 (1994).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, and G. Salamo, "Self-trapping of optical beams in photorefractive media," J. Opt. Soc. Am. B 10, 446-453 (1993).
[CrossRef]

DiPorto, P.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Duree, G.

M. Morin, G. Duree, G. Salamo, and M. Segev, "Waveguides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
[CrossRef] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp, "Stability of photorefractive spatial solitons," Opt. Lett. 19, 1296-1298 (1994).
[CrossRef] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Engin, D.

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Fressengeas, N.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons," Opt. Commun. 145, 393-400 (1998).
[CrossRef]

Herden, C.

M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, "Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides," Phys. Rev. E 64, 036613 (2001).
[CrossRef]

Kaiser, F.

J. Petter, C. Denz, A. Stepken, and F. Kaiser, "Anisotropic waveguides induced by photorefractive (2+1)D solitons," J. Opt. Soc. Am. B 19, 1145-1149 (2002).
[CrossRef]

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

Kip, D.

M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, "Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides," Phys. Rev. E 64, 036613 (2001).
[CrossRef]

Krolikowski, W.

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

Kugel, G.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons," Opt. Commun. 145, 393-400 (1998).
[CrossRef]

Maufoy, J.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons," Opt. Commun. 145, 393-400 (1998).
[CrossRef]

Mitchell, M.

Moerner, W. E.

Moretti, P.

M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, "Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides," Phys. Rev. E 64, 036613 (2001).
[CrossRef]

Morin, M.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
[CrossRef] [PubMed]

M. Morin, G. Duree, G. Salamo, and M. Segev, "Waveguides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
[CrossRef] [PubMed]

Neurgaonkar, R.

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Ostroverkhova, O.

Palange, E.

C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
[CrossRef]

E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
[CrossRef]

Pankrath, R.

M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, "Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides," Phys. Rev. E 64, 036613 (2001).
[CrossRef]

Petter, J.

J. Petter, C. Denz, A. Stepken, and F. Kaiser, "Anisotropic waveguides induced by photorefractive (2+1)D solitons," J. Opt. Soc. Am. B 19, 1145-1149 (2002).
[CrossRef]

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

Refaeli, E.

Salamo, G.

Salamo, G. J.

Schultz, J.

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Segev, M.

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, "One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate," Opt. Lett. 23, 421-423 (1998).
[CrossRef]

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

M. F. Shih, M. Segev, and G. J. Salamo, "Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons," Opt. Lett. 21, 931-933 (1996).
[CrossRef] [PubMed]

M. Segev, M. F. Shih, and G. C. Valley, "Photorefractive screening solitons of high and low intensity," J. Opt. Soc. Am. B 13, 706-718 (1996).
[CrossRef]

M. Morin, G. Duree, G. Salamo, and M. Segev, "Waveguides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
[CrossRef] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp, "Stability of photorefractive spatial solitons," Opt. Lett. 19, 1296-1298 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, and G. Salamo, "Self-trapping of optical beams in photorefractive media," J. Opt. Soc. Am. B 10, 446-453 (1993).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Sharp, E.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp, "Stability of photorefractive spatial solitons," Opt. Lett. 19, 1296-1298 (1994).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Sheldon, M.

Shih, M. F.

Singh, S. R.

S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady-state conditions," Opt. Commun. 118, 569-576 (1995).
[CrossRef]

Stepken, A.

J. Petter, C. Denz, A. Stepken, and F. Kaiser, "Anisotropic waveguides induced by photorefractive (2+1)D solitons," J. Opt. Soc. Am. B 19, 1145-1149 (2002).
[CrossRef]

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

Tamburrini, M.

Torruellas, W.

See S. Trillo and W. Torruellas, eds., Spatial Solitons (Springer, 2001), pp. 211-245.

Trillo, S.

See S. Trillo and W. Torruellas, eds., Spatial Solitons (Springer, 2001), pp. 211-245.

Tschudi, T.

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

Valley, G. C.

M. Segev, M. F. Shih, and G. C. Valley, "Photorefractive screening solitons of high and low intensity," J. Opt. Soc. Am. B 13, 706-718 (1996).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Weilnau, C.

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

Wesner, M.

M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, "Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides," Phys. Rev. E 64, 036613 (2001).
[CrossRef]

Wolfersberger, D.

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons," Opt. Commun. 145, 393-400 (1998).
[CrossRef]

Yariv, A.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp, "Stability of photorefractive spatial solitons," Opt. Lett. 19, 1296-1298 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, and G. Salamo, "Self-trapping of optical beams in photorefractive media," J. Opt. Soc. Am. B 10, 446-453 (1993).
[CrossRef]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Zozulya, A.

J. Opt. Soc. Am. B (4)

Nature (1)

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

Opt. Commun. (2)

N. Fressengeas, D. Wolfersberger, J. Maufoy, and G. Kugel, "Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons," Opt. Commun. 145, 393-400 (1998).
[CrossRef]

S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady-state conditions," Opt. Commun. 118, 569-576 (1995).
[CrossRef]

Opt. Lett. (10)

E. DelRe, A. D'Ercole, and A. J. Agranat, "Emergence of linear wave segments and predictable traits in saturated nonlinear media," Opt. Lett. 28, 260-262 (2003).
[CrossRef] [PubMed]

E. DelRe, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, and A. J. Agranat, "One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate," Opt. Lett. 23, 421-423 (1998).
[CrossRef]

M. Morin, G. Duree, G. Salamo, and M. Segev, "Waveguides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995).
[CrossRef] [PubMed]

G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, and E. Sharp, "Dimensionality and size of photorefractive spatial solitons," Opt. Lett. 19, 1195-1197 (1994).
[CrossRef] [PubMed]

D. N. Christodoulides and M. I. Carvalho, "Compression, self-bending, and collapse of Gaussian beams in photorefractive crystals," Opt. Lett. 19, 1714-1716 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, and E. Sharp, "Stability of photorefractive spatial solitons," Opt. Lett. 19, 1296-1298 (1994).
[CrossRef] [PubMed]

A. Zozulya and D. Anderson, "Nonstationary self-focusing in photorefractive media," Opt. Lett. 20, 837-839 (1995).
[CrossRef] [PubMed]

E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, "Electro-optic beam manipulation through photorefractive needles," Opt. Lett. 27, 2188-2190 (2002).
[CrossRef]

M. F. Shih, M. Segev, and G. J. Salamo, "Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons," Opt. Lett. 21, 931-933 (1996).
[CrossRef] [PubMed]

M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, "Soliton-induced waveguides in an organic photorefractive glass," Opt. Lett. 30, 519-521 (2005).
[CrossRef] [PubMed]

Phys. Rev. E (2)

M. Wesner, C. Herden, R. Pankrath, D. Kip, and P. Moretti, "Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides," Phys. Rev. E 64, 036613 (2001).
[CrossRef]

Note the particlelike properties even during transients [see, for example, C. Denz, W. Krolikowski, J. Petter, C. Weilnau, T. Tschudi, M. R. Belic, F. Kaiser, and A. Stepken, "Dynamics of formation and interaction of photorefractive screening solitons," Phys. Rev. E 60, 6222-6225 (1999)].
[CrossRef]

Phys. Rev. Lett. (5)

C. Dari-Salisburgo, E. DelRe, and E. Palange, "Molding and stretched evolution of optical solitons in cumulative nonlinearities," Phys. Rev. Lett. 91, 263903 (2003).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, and A. Yariv, "Dark photorefractive spatial solitons and photorefractive vortex solitons," Phys. Rev. Lett. 74, 1978-1981 (1995).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Other (2)

Locality allows extension to incoherent schemes.

See S. Trillo and W. Torruellas, eds., Spatial Solitons (Springer, 2001), pp. 211-245.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Existence curve for bright solitons of Eq. (8); (b), (c) index patterns and (d), (e) soliton profiles for the two points A and B, respectively, before and after the onset of strong saturation, highlighting the reshaping of the beam tails [(d) and (e)].

Fig. 2
Fig. 2

(a) Predicted self-trapping existence conditions (solid curve) from Eq. (9) for noncentrosymmetric samples ( m = 1 ) for the parameters of Ref. [4]. Dashed lines indicate the region of existence predicted by the nonlocal theory of Ref. [3], and the hyperbolic form of Eq. (9) well reproduces the observed insensitivity of Δ x min on E 0 for large beams (see text). For illustrative purposes, the single 1 + 1 D data point described in Ref. [4] is also plotted (filled squares), along with data for 2 + 1 D solitons (open squares) from Ref. [2] (minimum in the x direction). (b) Self-trapping existence conditions for centrosymmetric samples ( m = 2 ) : experimental results (squares) compared with theory (solid curve).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Y = exp ( 0 τ Q d τ ) [ 1 + 0 τ d τ exp ( 0 τ Q d τ ) ] ,
Y exp ( Q τ ) + 1 Q ( 1 Q ) exp ( Q τ ) Y exp ( Q τ ) ,
[ z + ( i 2 k ) x x ] A = ( i k n b ) Δ n A ,
Δ n = Δ n 0 exp ( m Q τ )
[ Γ u + ( 1 2 k ) x x u ] = ( k n b ) Δ n 0 exp ( m u 2 τ ) u ,
d 2 w ( ξ ) d ξ 2 = [ γ exp ( w 2 ) ] w ( ξ ) ,
p 2 p 0 2 = γ w 2 + γ w 0 2 exp ( w 2 ) + exp ( w 0 2 ) ,
d 2 w ( ξ ) d ξ 2 = { [ 1 exp ( w 0 2 ) ] w 0 2 exp ( w 2 ) } w ( ξ ) ,
Δ x min = Δ ξ min λ 2 π n b 2 a m E 0 m 2 ,

Metrics