Abstract

Soda-lime silicate (SLS) glasses were thermally poled at 230°C280°C with dc voltages up to 2kV applied to induce a second-order optical nonlinearity. Accompanying structural modifications to the thermally poled SLS glasses were investigated with scanning electron microscopy. On the cathode surface, sodium metasilicate crystals were formed through the reduction of migrating sodium ions at the cathode. At the anode, intense phase separation occurred within several micrometers beneath the anode surface during the thermal poling process. These structural modifications are attributed to the electric field enhancement effect. The second-order nonlinearity induced in such poled samples was found to still be present after a long period of high-temperature annealing, perhaps mainly due to a hindering effect from the phase separation and/or accumulated calcium ions to the recombination of space charges.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
    [CrossRef] [PubMed]
  2. W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786-1788 (1996).
    [CrossRef] [PubMed]
  3. T. G. Alley and S. R. J. Brueck, "Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass," Opt. Lett. 23, 1170-1172 (1998).
    [CrossRef]
  4. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004).
    [CrossRef] [PubMed]
  5. D. Faccio, V. Pruneri, and P. G. Kazansky, "Noncollinear Maker's fringe measurements of second-order nonlinear optical layers," Opt. Lett. 25, 1376-1378 (2000).
    [CrossRef]
  6. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
    [CrossRef]
  7. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
    [CrossRef]
  8. H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
    [CrossRef]
  9. P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
    [CrossRef]
  10. T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
    [CrossRef]
  11. M. Qiu, F. Pi, G. Orriols, and M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998).
    [CrossRef]
  12. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
    [CrossRef]
  13. W. Margulis and F. Laurell, "Fabrication of waveguides in glasses by a poling procedure," Appl. Phys. Lett. 71, 2418-2420 (1997).
    [CrossRef]
  14. A. L. R. Brennand and J. S. Wilkinson, "Planar waveguides in multicomponent glasses fabricated by field-driven differential drift of cations," Opt. Lett. 27, 906-908 (2002).
    [CrossRef]
  15. V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
    [CrossRef]
  16. C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
    [CrossRef]
  17. H. An and S. Fleming, "Electric field enhanced nanocrystal formation in thermally poled optical fibres," Electron. Lett. 41, 584-586 (2005).
    [CrossRef]
  18. H. An and S. Fleming, "Near-anode phase separation in thermally poled soda lime glass," Appl. Phys. Lett. 88, 181106 (2006).
    [CrossRef]
  19. D. Kashchiev, "Nucleation in external electric field," J. Cryst. Growth 13-14, 128-130 (1972).
    [CrossRef]
  20. J. O. Isard, P. F. James, and A. H. Ramsden, "An investigation of the possibility that electric fields could affect the nucleation of glass ceramics," Phys. Chem. Glasses 19, 9-13m (1978).
  21. R. C. de Vekey and A. J. Majumdar, "Effect of electric field on phase separation of glass," Nature 225, 172-173 (1970).
    [CrossRef]
  22. W. Liu, K. M. Liang, Y. K. Zheng, S. R. Gu, and H. Chen, "The effect of an electric field on the phase separation of glasses," J. Phys. D 30, 3366-3370 (1997).
    [CrossRef]
  23. U. K. Krieger and W. A. Landford, "Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: experimental," J. Non-Cryst. Solids 102, 50-61 (1988).
    [CrossRef]
  24. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, "Mechanism for thermal poling in twin-hole silicate fibers," J. Opt. Soc. Am. B 19, 870-874 (2002).
    [CrossRef]
  25. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, "Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes," Opt. Express 12, 6093-6099 (2004).
    [CrossRef] [PubMed]
  26. C. S. Franco, G. A. Quintero, N. Myrén, A. Kudlinski, H. Zeghlache, H. R. Carvalho, A. L. C. Triques, D. M. González, P. M. P. Gouvêa, G. Martinelli, Y. Quiquempois, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Measurement of depletion region width in poled silica," Appl. Opt. 44, 5793-5796 (2005).
    [CrossRef] [PubMed]
  27. A. Kudlinski, G. Martinelli, and Y. Quiquempois, "Time evolution of second-order nonlinear profiles induced within thermally poled silica samples," Opt. Lett. 30, 1039-1041 (2005).
    [CrossRef] [PubMed]
  28. B. Roling and M. D. Ingram, "Mixed alkaline-earth effects in ion conducting glasses" J. Non-Cryst. Solids 265, 113-119 (2000).
    [CrossRef]

2006 (1)

H. An and S. Fleming, "Near-anode phase separation in thermally poled soda lime glass," Appl. Phys. Lett. 88, 181106 (2006).
[CrossRef]

2005 (3)

2004 (4)

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004).
[CrossRef] [PubMed]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
[CrossRef]

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, "Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes," Opt. Express 12, 6093-6099 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

2002 (2)

2001 (1)

C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
[CrossRef]

2000 (3)

V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
[CrossRef]

D. Faccio, V. Pruneri, and P. G. Kazansky, "Noncollinear Maker's fringe measurements of second-order nonlinear optical layers," Opt. Lett. 25, 1376-1378 (2000).
[CrossRef]

B. Roling and M. D. Ingram, "Mixed alkaline-earth effects in ion conducting glasses" J. Non-Cryst. Solids 265, 113-119 (2000).
[CrossRef]

1998 (4)

T. G. Alley and S. R. J. Brueck, "Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass," Opt. Lett. 23, 1170-1172 (1998).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

M. Qiu, F. Pi, G. Orriols, and M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998).
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

1997 (2)

W. Margulis and F. Laurell, "Fabrication of waveguides in glasses by a poling procedure," Appl. Phys. Lett. 71, 2418-2420 (1997).
[CrossRef]

W. Liu, K. M. Liang, Y. K. Zheng, S. R. Gu, and H. Chen, "The effect of an electric field on the phase separation of glasses," J. Phys. D 30, 3366-3370 (1997).
[CrossRef]

1996 (1)

1994 (1)

P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
[CrossRef]

1991 (1)

1988 (1)

U. K. Krieger and W. A. Landford, "Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: experimental," J. Non-Cryst. Solids 102, 50-61 (1988).
[CrossRef]

1978 (1)

J. O. Isard, P. F. James, and A. H. Ramsden, "An investigation of the possibility that electric fields could affect the nucleation of glass ceramics," Phys. Chem. Glasses 19, 9-13m (1978).

1972 (1)

D. Kashchiev, "Nucleation in external electric field," J. Cryst. Growth 13-14, 128-130 (1972).
[CrossRef]

1970 (1)

R. C. de Vekey and A. J. Majumdar, "Effect of electric field on phase separation of glass," Nature 225, 172-173 (1970).
[CrossRef]

Alley, T. G.

T. G. Alley and S. R. J. Brueck, "Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass," Opt. Lett. 23, 1170-1172 (1998).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

An, H.

H. An and S. Fleming, "Near-anode phase separation in thermally poled soda lime glass," Appl. Phys. Lett. 88, 181106 (2006).
[CrossRef]

H. An and S. Fleming, "Electric field enhanced nanocrystal formation in thermally poled optical fibres," Electron. Lett. 41, 584-586 (2005).
[CrossRef]

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

Bermejo, F. J.

C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
[CrossRef]

Bibiche, M.

Blazkiewicz, P.

Brennand, A. L. R.

Briois, V.

V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
[CrossRef]

Brueck, S. R. J.

Buffeteau, T.

V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
[CrossRef]

Cabrillo, C.

C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
[CrossRef]

Carrier dit Moulin, C.

V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
[CrossRef]

Carvalho, H. R.

Carvalho, I. C. S.

Chen, H.

W. Liu, K. M. Liang, Y. K. Zheng, S. R. Gu, and H. Chen, "The effect of an electric field on the phase separation of glasses," J. Phys. D 30, 3366-3370 (1997).
[CrossRef]

Cox, G.

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

de Vekey, R. C.

R. C. de Vekey and A. J. Majumdar, "Effect of electric field on phase separation of glass," Nature 225, 172-173 (1970).
[CrossRef]

Desbat, B.

V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
[CrossRef]

Digonnet, M. J. F.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
[CrossRef]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004).
[CrossRef] [PubMed]

Faccio, D.

C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
[CrossRef]

D. Faccio, V. Pruneri, and P. G. Kazansky, "Noncollinear Maker's fringe measurements of second-order nonlinear optical layers," Opt. Lett. 25, 1376-1378 (2000).
[CrossRef]

Fargin, E.

V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
[CrossRef]

Fleming, S.

H. An and S. Fleming, "Near-anode phase separation in thermally poled soda lime glass," Appl. Phys. Lett. 88, 181106 (2006).
[CrossRef]

H. An and S. Fleming, "Electric field enhanced nanocrystal formation in thermally poled optical fibres," Electron. Lett. 41, 584-586 (2005).
[CrossRef]

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, "Mechanism for thermal poling in twin-hole silicate fibers," J. Opt. Soc. Am. B 19, 870-874 (2002).
[CrossRef]

Franco, C. S.

Garcia, F. C.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Gibson, J. M.

C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
[CrossRef]

González, D. M.

Gouvêa, P. M. P.

Gu, S. R.

W. Liu, K. M. Liang, Y. K. Zheng, S. R. Gu, and H. Chen, "The effect of an electric field on the phase separation of glasses," J. Phys. D 30, 3366-3370 (1997).
[CrossRef]

Helander, P.

Hering, E.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

Ingram, M. D.

B. Roling and M. D. Ingram, "Mixed alkaline-earth effects in ion conducting glasses" J. Non-Cryst. Solids 265, 113-119 (2000).
[CrossRef]

Isard, J. O.

J. O. Isard, P. F. James, and A. H. Ramsden, "An investigation of the possibility that electric fields could affect the nucleation of glass ceramics," Phys. Chem. Glasses 19, 9-13m (1978).

James, P. F.

J. O. Isard, P. F. James, and A. H. Ramsden, "An investigation of the possibility that electric fields could affect the nucleation of glass ceramics," Phys. Chem. Glasses 19, 9-13m (1978).

Johnson, J. A.

C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
[CrossRef]

Kashchiev, D.

D. Kashchiev, "Nucleation in external electric field," J. Cryst. Growth 13-14, 128-130 (1972).
[CrossRef]

Kazansky, P. G.

C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
[CrossRef]

D. Faccio, V. Pruneri, and P. G. Kazansky, "Noncollinear Maker's fringe measurements of second-order nonlinear optical layers," Opt. Lett. 25, 1376-1378 (2000).
[CrossRef]

P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Kino, G. S.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
[CrossRef]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004).
[CrossRef] [PubMed]

Krieger, U. K.

U. K. Krieger and W. A. Landford, "Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: experimental," J. Non-Cryst. Solids 102, 50-61 (1988).
[CrossRef]

Kudlinski, A.

Landford, W. A.

U. K. Krieger and W. A. Landford, "Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: experimental," J. Non-Cryst. Solids 102, 50-61 (1988).
[CrossRef]

Laurell, F.

W. Margulis and F. Laurell, "Fabrication of waveguides in glasses by a poling procedure," Appl. Phys. Lett. 71, 2418-2420 (1997).
[CrossRef]

W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21, 1786-1788 (1996).
[CrossRef] [PubMed]

Le Flem, G.

V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
[CrossRef]

Lelek, M.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Lesche, B.

Liang, K. M.

W. Liu, K. M. Liang, Y. K. Zheng, S. R. Gu, and H. Chen, "The effect of an electric field on the phase separation of glasses," J. Phys. D 30, 3366-3370 (1997).
[CrossRef]

Liu, W.

W. Liu, K. M. Liang, Y. K. Zheng, S. R. Gu, and H. Chen, "The effect of an electric field on the phase separation of glasses," J. Phys. D 30, 3366-3370 (1997).
[CrossRef]

Majumdar, A. J.

R. C. de Vekey and A. J. Majumdar, "Effect of electric field on phase separation of glass," Nature 225, 172-173 (1970).
[CrossRef]

Margulis, W.

Martinelli, G.

Mukherjee, N.

Myers, R. A.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16, 1732-1734 (1991).
[CrossRef] [PubMed]

Myrén, N.

Nazabal, V.

V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
[CrossRef]

Norin, L.

Olsson, H.

Orriols, G.

Ozcan, A.

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Iterative processing of second-order optical nonlinearity depth profiles," Opt. Express 12, 3367-3376 (2004).
[CrossRef] [PubMed]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
[CrossRef]

Pi, F.

Pruneri, V.

C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
[CrossRef]

D. Faccio, V. Pruneri, and P. G. Kazansky, "Noncollinear Maker's fringe measurements of second-order nonlinear optical layers," Opt. Lett. 25, 1376-1378 (2000).
[CrossRef]

Qiu, M.

Quintero, G. A.

Quiquempois, Y.

Ramsden, A. H.

J. O. Isard, P. F. James, and A. H. Ramsden, "An investigation of the possibility that electric fields could affect the nucleation of glass ceramics," Phys. Chem. Glasses 19, 9-13m (1978).

Roling, B.

B. Roling and M. D. Ingram, "Mixed alkaline-earth effects in ion conducting glasses" J. Non-Cryst. Solids 265, 113-119 (2000).
[CrossRef]

Russell, P. St. J.

P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Sjödin, N.

Svennebrink, J.

Triques, A. L. C.

Wilkinson, J. S.

Wong, D.

Xu, W.

Zeghlache, H.

C. S. Franco, G. A. Quintero, N. Myrén, A. Kudlinski, H. Zeghlache, H. R. Carvalho, A. L. C. Triques, D. M. González, P. M. P. Gouvêa, G. Martinelli, Y. Quiquempois, B. Lesche, W. Margulis, and I. C. S. Carvalho, "Measurement of depletion region width in poled silica," Appl. Opt. 44, 5793-5796 (2005).
[CrossRef] [PubMed]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

Zheng, Y. K.

W. Liu, K. M. Liang, Y. K. Zheng, S. R. Gu, and H. Chen, "The effect of an electric field on the phase separation of glasses," J. Phys. D 30, 3366-3370 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83, 3623-3625 (2003).
[CrossRef]

A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Improved technique to determine second-order optical nonlinearity profiles using two different samples," Appl. Phys. Lett. 84, 681-683 (2004).
[CrossRef]

H. An, S. Fleming, and G. Cox, "Visualization of second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004).
[CrossRef]

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998).
[CrossRef]

W. Margulis and F. Laurell, "Fabrication of waveguides in glasses by a poling procedure," Appl. Phys. Lett. 71, 2418-2420 (1997).
[CrossRef]

C. Cabrillo, F. J. Bermejo, J. M. Gibson, J. A. Johnson, D. Faccio, V. Pruneri, and P. G. Kazansky, "Thermally poled silica samples are structurally heterogeneous: electron diffraction evidence of partial crystallization," Appl. Phys. Lett. 78, 1991-1993 (2001).
[CrossRef]

H. An and S. Fleming, "Near-anode phase separation in thermally poled soda lime glass," Appl. Phys. Lett. 88, 181106 (2006).
[CrossRef]

Electron. Lett. (1)

H. An and S. Fleming, "Electric field enhanced nanocrystal formation in thermally poled optical fibres," Electron. Lett. 41, 584-586 (2005).
[CrossRef]

J. Appl. Phys. (1)

V. Nazabal, E. Fargin, G. Le Flem, V. Briois, C. Carrier dit Moulin, T. Buffeteau, and B. Desbat, "X-ray absorption and infrared reflectance of poled silica glass for second harmonic generation," J. Appl. Phys. 88, 6245-6251 (2000).
[CrossRef]

J. Cryst. Growth (1)

D. Kashchiev, "Nucleation in external electric field," J. Cryst. Growth 13-14, 128-130 (1972).
[CrossRef]

J. Non-Cryst. Solids (3)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998).
[CrossRef]

U. K. Krieger and W. A. Landford, "Field assisted transport of Na+ ions, Ca2+ ions and electrons in commercial soda-lime glass I: experimental," J. Non-Cryst. Solids 102, 50-61 (1988).
[CrossRef]

B. Roling and M. D. Ingram, "Mixed alkaline-earth effects in ion conducting glasses" J. Non-Cryst. Solids 265, 113-119 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

W. Liu, K. M. Liang, Y. K. Zheng, S. R. Gu, and H. Chen, "The effect of an electric field on the phase separation of glasses," J. Phys. D 30, 3366-3370 (1997).
[CrossRef]

Nature (1)

R. C. de Vekey and A. J. Majumdar, "Effect of electric field on phase separation of glass," Nature 225, 172-173 (1970).
[CrossRef]

Opt. Commun. (1)

P. G. Kazansky and P. St. J. Russell, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110, 611-614 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Phys. Chem. Glasses (1)

J. O. Isard, P. F. James, and A. H. Ramsden, "An investigation of the possibility that electric fields could affect the nucleation of glass ceramics," Phys. Chem. Glasses 19, 9-13m (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Micrograph of the SH signal from the cross section of the SLS glass sample thermally poled at 1.8 kV and 280 ° C . The image size is 125 μ m × 125 μ m . Inset: schematic of the sample cross section (in the x y plane) under observation.

Fig. 2
Fig. 2

Spatial profile of the induced SON in the SLS glass sample thermally poled at 1.8 kV and 280 ° C . The shaded area represents the glass region. Inset: the overlay image on which a line scan was conducted.

Fig. 3
Fig. 3

Precipitates on the cathode surface of the SLS glass sample thermally poled at 1.8 kV and 280 ° C .

Fig. 4
Fig. 4

XRD patterns of the cathode surface of the SLS glass sample thermally poled at 1.8 kV and 280 ° C .

Fig. 5
Fig. 5

SEM micrograph of the etched cross section of the anode side of the SLS glass sample thermally poled at 1.8 kV and 280 ° C .

Fig. 6
Fig. 6

Optical micrograph of the etched anode surface of the SLS glass sample thermally poled at 1.8 kV and 280 ° C .

Fig. 7
Fig. 7

SEM micrograph of the etched cross section of the anode side of the SLS glass sample thermally poled at 1.8 kV and 230 ° C .

Fig. 8
Fig. 8

Micrograph of the SH signal from the cross section of the SLS glass sample thermally poled at 1.0 kV and 280 ° C . The image size is 93.75 μ m × 93.75 μ m .

Fig. 9
Fig. 9

SEM micrograph of the etched cross section of the anode side of the SLS glass sample thermally poled at 1.0 kV and 280 ° C .

Fig. 10
Fig. 10

Elements distribution under the anode of the SLS glass sample thermally poled at 1.0 kV and 280 ° C . The shaded area corresponds to Region 3 in Fig. 9. The vertical dashed line represents the anode surface. Inset: the SEM micrograph showing where the EDS measurement was conducted.

Fig. 11
Fig. 11

Elements distribution under the cathode of the SLS glass sample thermally poled at 1.0 kV and 280 ° C .

Fig. 12
Fig. 12

SON distribution in the annealed (left) and unannealed (right) sections of the SLS glass sample thermally poled at 1.8 kV and 280 ° C after annealing at 350 ° C for 900 min . Inset is the corresponding SH micrograph.

Fig. 13
Fig. 13

Ca and Na distribution under the anode surface of the annealed SLS glass sample after annealing at 350 ° C for 900 min . The vertical dashed line represents the anode surface.

Fig. 14
Fig. 14

XRD pattern of the anode surface of the SLS glass sample after being thermally poled at 1.8 kV and 280 ° C and further heated at 650 ° C for 300 min .

Metrics