Abstract

We propose an ultrafast Kerr-lens saturable absorber, which is suitable for incorporating monolithically into semiconductor waveguides. We propose suitable materials and geometries for device fabrication. We study the saturable absorption using numerical methods and consider the effect of such a hard Kerr-lens configuration on a monolithic passively mode-locked semiconductor diode device and the possibility of producing pulses of the order of hundreds of femtoseconds.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications," IEE Proc.: Optoelectron. 47, 251-278 (2000).
    [CrossRef]
  2. J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, "Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers," Appl. Phys. Lett. 39, 525-527 (1981).
    [CrossRef]
  3. E. P. Ippen, D. J. Eichenberger, and R. W. Dixon, "Picosecond pulse generation by passive mode locking of diode laser," Appl. Phys. Lett. 37, 267-269 (1980).
    [CrossRef]
  4. V. V. Nikolaev and E. A. Avrutin, "Quantum-well design for monolithic optical devices with gain and saturable absorber sections," IEEE Photonics Technol. Lett. 16, 24-26 (2004).
    [CrossRef]
  5. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
    [CrossRef]
  6. R. Scollo, H.-J. Lohe, J. Holzman, F. Robin, H. Jäckel, D. Erni, W. Vogt, and E. Gini, "Mode-locked laser diode with an ultrafast integrated uni-traveling carrier saturable absorber," Opt. Lett. 30, 2808-2810 (2005).
    [CrossRef] [PubMed]
  7. F. Salin, J. Squier, and M. Piche, "Mode locking of Ti:Al2O3 lasers and self-focusing: a Gaussian approximation," Opt. Lett. 16, 1674-1676 (1991).
    [CrossRef] [PubMed]
  8. L. Kuang, Q. Chen, E. H. Sargent, and Z. Y. Wang, "[60]fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths," J. Am. Chem. Soc. 125, 13648-13649 (2003).
    [CrossRef] [PubMed]
  9. Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths," Appl. Phys. Lett. 83, 2115-2117 (2003).
    [CrossRef]
  10. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
    [CrossRef]
  11. H. K. Tsang, M. W. K. Mak, L. Y. Chan, J. B. Soole, C. Youtsey, and I. Adeside, "Etched cavity InGaAsP-InP waveguide Fabry-Perot filter tunable by current injection," J. Lightwave Technol. 17, 1890-1895 (1999).
    [CrossRef]
  12. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
    [CrossRef] [PubMed]
  13. A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5-μmGaInNAs semiconductor saturable absorber for passively mode-locked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
    [CrossRef]
  14. M. B. Flynn, L. O'Faolain, and T. F. Krauss, "Integrated chirp compensation in a monolithic passively mode-locked semiconductor diode laser," Appl. Phys. Lett. 86, 221104 (2005).
    [CrossRef]
  15. U. Keller, W. H. Knox, and G. W. 'tHooft, "Ultrafast solid-state mode-locked lasers using resonant nonlinearities," IEEE J. Quantum Electron. 28, 2123-2133 (1992).
    [CrossRef]
  16. L. O'Faolain, M. B. Flynn, R. Wilson, and T. F. Krauss, "A Kerr mode-locked semiconductor laser: design and theory," IEEE J. Sel. Top. Quantum Electron. 10, 1063-1069 (2004).
    [CrossRef]

2005 (3)

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5-μmGaInNAs semiconductor saturable absorber for passively mode-locked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

M. B. Flynn, L. O'Faolain, and T. F. Krauss, "Integrated chirp compensation in a monolithic passively mode-locked semiconductor diode laser," Appl. Phys. Lett. 86, 221104 (2005).
[CrossRef]

R. Scollo, H.-J. Lohe, J. Holzman, F. Robin, H. Jäckel, D. Erni, W. Vogt, and E. Gini, "Mode-locked laser diode with an ultrafast integrated uni-traveling carrier saturable absorber," Opt. Lett. 30, 2808-2810 (2005).
[CrossRef] [PubMed]

2004 (2)

L. O'Faolain, M. B. Flynn, R. Wilson, and T. F. Krauss, "A Kerr mode-locked semiconductor laser: design and theory," IEEE J. Sel. Top. Quantum Electron. 10, 1063-1069 (2004).
[CrossRef]

V. V. Nikolaev and E. A. Avrutin, "Quantum-well design for monolithic optical devices with gain and saturable absorber sections," IEEE Photonics Technol. Lett. 16, 24-26 (2004).
[CrossRef]

2003 (4)

L. Kuang, Q. Chen, E. H. Sargent, and Z. Y. Wang, "[60]fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths," J. Am. Chem. Soc. 125, 13648-13649 (2003).
[CrossRef] [PubMed]

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

2000 (1)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications," IEE Proc.: Optoelectron. 47, 251-278 (2000).
[CrossRef]

1999 (1)

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

1992 (1)

U. Keller, W. H. Knox, and G. W. 'tHooft, "Ultrafast solid-state mode-locked lasers using resonant nonlinearities," IEEE J. Quantum Electron. 28, 2123-2133 (1992).
[CrossRef]

1991 (1)

1981 (1)

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, "Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers," Appl. Phys. Lett. 39, 525-527 (1981).
[CrossRef]

1980 (1)

E. P. Ippen, D. J. Eichenberger, and R. W. Dixon, "Picosecond pulse generation by passive mode locking of diode laser," Appl. Phys. Lett. 37, 267-269 (1980).
[CrossRef]

Adeside, I.

Augustyniak, W. M.

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, "Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers," Appl. Phys. Lett. 39, 525-527 (1981).
[CrossRef]

Aus der Au, and J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Avrutin, E. A.

V. V. Nikolaev and E. A. Avrutin, "Quantum-well design for monolithic optical devices with gain and saturable absorber sections," IEEE Photonics Technol. Lett. 16, 24-26 (2004).
[CrossRef]

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications," IEE Proc.: Optoelectron. 47, 251-278 (2000).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Chan, L. Y.

Chen, Q.

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

L. Kuang, Q. Chen, E. H. Sargent, and Z. Y. Wang, "[60]fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths," J. Am. Chem. Soc. 125, 13648-13649 (2003).
[CrossRef] [PubMed]

Dixon, R. W.

E. P. Ippen, D. J. Eichenberger, and R. W. Dixon, "Picosecond pulse generation by passive mode locking of diode laser," Appl. Phys. Lett. 37, 267-269 (1980).
[CrossRef]

Eichenberger, D. J.

E. P. Ippen, D. J. Eichenberger, and R. W. Dixon, "Picosecond pulse generation by passive mode locking of diode laser," Appl. Phys. Lett. 37, 267-269 (1980).
[CrossRef]

Erni, D.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Flynn, M. B.

M. B. Flynn, L. O'Faolain, and T. F. Krauss, "Integrated chirp compensation in a monolithic passively mode-locked semiconductor diode laser," Appl. Phys. Lett. 86, 221104 (2005).
[CrossRef]

L. O'Faolain, M. B. Flynn, R. Wilson, and T. F. Krauss, "A Kerr mode-locked semiconductor laser: design and theory," IEEE J. Sel. Top. Quantum Electron. 10, 1063-1069 (2004).
[CrossRef]

Forchel, A.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Gini, E.

Grange, R.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5-μmGaInNAs semiconductor saturable absorber for passively mode-locked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Haiml, M.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5-μmGaInNAs semiconductor saturable absorber for passively mode-locked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Holzman, J.

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Ippen, E. P.

E. P. Ippen, D. J. Eichenberger, and R. W. Dixon, "Picosecond pulse generation by passive mode locking of diode laser," Appl. Phys. Lett. 37, 267-269 (1980).
[CrossRef]

Jäckel, H.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Kamp, M.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Keller, U.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5-μmGaInNAs semiconductor saturable absorber for passively mode-locked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

U. Keller, W. H. Knox, and G. W. 'tHooft, "Ultrafast solid-state mode-locked lasers using resonant nonlinearities," IEEE J. Quantum Electron. 28, 2123-2133 (1992).
[CrossRef]

Klopf, F.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Knox, W. H.

U. Keller, W. H. Knox, and G. W. 'tHooft, "Ultrafast solid-state mode-locked lasers using resonant nonlinearities," IEEE J. Quantum Electron. 28, 2123-2133 (1992).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Krauss, T. F.

M. B. Flynn, L. O'Faolain, and T. F. Krauss, "Integrated chirp compensation in a monolithic passively mode-locked semiconductor diode laser," Appl. Phys. Lett. 86, 221104 (2005).
[CrossRef]

L. O'Faolain, M. B. Flynn, R. Wilson, and T. F. Krauss, "A Kerr mode-locked semiconductor laser: design and theory," IEEE J. Sel. Top. Quantum Electron. 10, 1063-1069 (2004).
[CrossRef]

Kuang, L.

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

L. Kuang, Q. Chen, E. H. Sargent, and Z. Y. Wang, "[60]fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths," J. Am. Chem. Soc. 125, 13648-13649 (2003).
[CrossRef] [PubMed]

Liverini, V.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5-μmGaInNAs semiconductor saturable absorber for passively mode-locked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Logan, R. A.

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, "Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers," Appl. Phys. Lett. 39, 525-527 (1981).
[CrossRef]

Lohe, H.-J.

Mak, M. W. K.

Marsh, J. H.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications," IEE Proc.: Optoelectron. 47, 251-278 (2000).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Mikulyak, R. M.

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, "Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers," Appl. Phys. Lett. 39, 525-527 (1981).
[CrossRef]

Nikolaev, V. V.

V. V. Nikolaev and E. A. Avrutin, "Quantum-well design for monolithic optical devices with gain and saturable absorber sections," IEEE Photonics Technol. Lett. 16, 24-26 (2004).
[CrossRef]

O'Faolain, L.

M. B. Flynn, L. O'Faolain, and T. F. Krauss, "Integrated chirp compensation in a monolithic passively mode-locked semiconductor diode laser," Appl. Phys. Lett. 86, 221104 (2005).
[CrossRef]

L. O'Faolain, M. B. Flynn, R. Wilson, and T. F. Krauss, "A Kerr mode-locked semiconductor laser: design and theory," IEEE J. Sel. Top. Quantum Electron. 10, 1063-1069 (2004).
[CrossRef]

Piche, M.

Portnoi, E. L.

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications," IEE Proc.: Optoelectron. 47, 251-278 (2000).
[CrossRef]

Reithmaier, J. P.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Robin, F.

Rutz, A.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5-μmGaInNAs semiconductor saturable absorber for passively mode-locked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Salin, F.

Sargent, E. H.

L. Kuang, Q. Chen, E. H. Sargent, and Z. Y. Wang, "[60]fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths," J. Am. Chem. Soc. 125, 13648-13649 (2003).
[CrossRef] [PubMed]

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

Schön, S.

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5-μmGaInNAs semiconductor saturable absorber for passively mode-locked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

Schuller, Ch.

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Scollo, R.

Soole, J. B.

Squier, J.

'tHooft, G. W.

U. Keller, W. H. Knox, and G. W. 'tHooft, "Ultrafast solid-state mode-locked lasers using resonant nonlinearities," IEEE J. Quantum Electron. 28, 2123-2133 (1992).
[CrossRef]

Tsang, H. K.

Tsang, W. T.

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, "Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers," Appl. Phys. Lett. 39, 525-527 (1981).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, "Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers," Appl. Phys. Lett. 39, 525-527 (1981).
[CrossRef]

Vogt, W.

Wang, Z. Y.

L. Kuang, Q. Chen, E. H. Sargent, and Z. Y. Wang, "[60]fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths," J. Am. Chem. Soc. 125, 13648-13649 (2003).
[CrossRef] [PubMed]

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

Wilson, R.

L. O'Faolain, M. B. Flynn, R. Wilson, and T. F. Krauss, "A Kerr mode-locked semiconductor laser: design and theory," IEEE J. Sel. Top. Quantum Electron. 10, 1063-1069 (2004).
[CrossRef]

Youtsey, C.

Appl. Phys. Lett. (5)

J. P. van der Ziel, W. T. Tsang, R. A. Logan, R. M. Mikulyak, and W. M. Augustyniak, "Subpicosecond pulses from passively mode-locked GaAs buried optical guide semiconductor lasers," Appl. Phys. Lett. 39, 525-527 (1981).
[CrossRef]

E. P. Ippen, D. J. Eichenberger, and R. W. Dixon, "Picosecond pulse generation by passive mode locking of diode laser," Appl. Phys. Lett. 37, 267-269 (1980).
[CrossRef]

Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, "Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths," Appl. Phys. Lett. 83, 2115-2117 (2003).
[CrossRef]

Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

M. B. Flynn, L. O'Faolain, and T. F. Krauss, "Integrated chirp compensation in a monolithic passively mode-locked semiconductor diode laser," Appl. Phys. Lett. 86, 221104 (2005).
[CrossRef]

Electron. Lett. (1)

A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schön, and U. Keller, "1.5-μmGaInNAs semiconductor saturable absorber for passively mode-locked solid-state lasers," Electron. Lett. 41, 321-323 (2005).
[CrossRef]

IEE Proc.: Optoelectron. (1)

E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications," IEE Proc.: Optoelectron. 47, 251-278 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

U. Keller, W. H. Knox, and G. W. 'tHooft, "Ultrafast solid-state mode-locked lasers using resonant nonlinearities," IEEE J. Quantum Electron. 28, 2123-2133 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

L. O'Faolain, M. B. Flynn, R. Wilson, and T. F. Krauss, "A Kerr mode-locked semiconductor laser: design and theory," IEEE J. Sel. Top. Quantum Electron. 10, 1063-1069 (2004).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and, J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

V. V. Nikolaev and E. A. Avrutin, "Quantum-well design for monolithic optical devices with gain and saturable absorber sections," IEEE Photonics Technol. Lett. 16, 24-26 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

L. Kuang, Q. Chen, E. H. Sargent, and Z. Y. Wang, "[60]fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths," J. Am. Chem. Soc. 125, 13648-13649 (2003).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nature (1)

U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of proposed device. The ridge waveguide structure may be used as a waveguide or laser cavity. The electrical top contact may be used for injecting carriers to provide gain.

Fig. 2
Fig. 2

Illustrative cross-sectional plot of power intensity in waveguides and a 2 μ m etched slot with polymer and 1 μ m mode width. An increase in power from a) low-power density (with transmission of 0.3 ) to b) an increased power density of 5 GW cm 2 (with transmission of 0.55 ) shows reduced diffraction and enhanced coupling into the opposite waveguide.

Fig. 3
Fig. 3

Plot of the transmission into the fundamental mode through a slot versus slot width for low power.

Fig. 4
Fig. 4

Plot of the transmission into the fundamental mode through a slot versus continuous-wave power density for mode widths of 1, 2, 5, and 10 μ m .

Fig. 5
Fig. 5

Plot of modulation depth versus slot width for 1 μ m mode widths at a peak power of 35 W .

Fig. 6
Fig. 6

Plot of saturation fluence versus Kerr nonlinearity relaxation time for a saturation intensity of 10 GW cm 2 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + n 2 I
α = α 0 + β I ,
f NL = n 0 w 2 4 d 1 n 2 I ,
τ min = 1.76 2 D g q 0 ,
D g = g Ω g 2 .

Metrics