Abstract

Quasiperiodic Fibonacci-like and fractal Cantor-like single- and multiple-row nanopillar waveguides are investigated theoretically by employing the finite-difference time-domain method. It is shown that resonant modes of the Fibonacci and Cantor waveguides can have a Q factor comparable with that of a point-defect resonator embedded in a periodic nanopillar waveguide, while the radiation is preferably emitted into the waveguide direction, thus improving coupling to an unstructured dielectric waveguide located along the structure axis. This is especially so when the dielectric waveguide introduces a small perturbation in the aperiodic structure, breaking the structure symmetry while staying well apart from the main localization area of the resonant mode. The high-Q factor and increased coupling with the external dielectric waveguide suggest using the proposed deterministically aperiodic nanopillar waveguides in photonic integrated circuits.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription