Abstract

Absolute frequency measurements, with uncertainties as low as 2kHz (1×1011), are presented for the ν1+ν3 band of C212H2 at 1.5μm (194198THz). The measurements were made using cavity-enhanced, diode-laser-based saturation spectroscopy. With one laser system stabilized to the P(16) line of C213H2 and a system stabilized to the line in C212H2 whose frequency was to be determined, a Cr:YAG laser-based frequency comb was employed to measure the frequency intervals. The systematic uncertainty is notably reduced relative to that of previous studies, and the region of measured lines has been extended. Improved molecular constants are obtained.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Demtroder, Laser Spectroscopy (Springer, 1996) pp. 436-454 and references therein.
  2. P.Gill, ed., Proceedings of the Sixth Symposium on Frequency Standards and Metrology (World Scientific, 2002) and references therein.
  3. D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, "A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands," in Frequency-Stabilized Lasers and their Applications, Y.C.Chung, ed., Proc. SPIE 1837, 106-114 (1992).
  4. S. Gerstenkorn and P. Luc, Atlas du Spectre d'Absorption de la Molécule d'Iode (Editions du Centre National de la Recherche Scientifique, 1978).
  5. T. J. Quinn, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)," Metrologia 40, 103-133 (2003).
    [CrossRef]
  6. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, "Ultranarrow C213H2 saturated-absorption lines at 1.5 μm," Opt. Lett. 19, 840-842 (1994).
    [CrossRef] [PubMed]
  7. M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, "High-frequency-stability laser at 1.5 μm using Doppler-free molecular lines," Opt. Lett. 20, 572-574 (1995).
    [CrossRef]
  8. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, "Accurate optical frequency atlas of the 1.5-μm bands of acetylene," J. Opt. Soc. Am. B 13, 2708-2714 (1996).
    [CrossRef]
  9. A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
    [CrossRef]
  10. A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
    [CrossRef]
  11. A. Czajkowski, A. A. Madej, and P. Dube, "Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (v1+v3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
    [CrossRef]
  12. T. Kurosu and U. Sterr, "Frequency-stabilization of a 1.54 micrometer DFB-laser diode to Doppler-free absorption lines of acetylene," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 248-254 (2001).
  13. G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54-μm Er-Yb laser against Doppler-free C213H2 lines," Opt. Commun. 209, 411-416 (2002).
    [CrossRef]
  14. A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
    [CrossRef]
  15. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  16. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
    [CrossRef]
  17. F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
    [CrossRef] [PubMed]
  18. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, and W. R. C. Rowley, "Absolute frequency measurement of a 1.5-μm acetylene standard by use of a combined frequency chain and femtosecond comb," Opt. Lett. 29, 566-568 (2004).
    [CrossRef] [PubMed]
  19. A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
    [CrossRef]
  20. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, "Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser," Opt. Express 13, 9196-9201 (2005).
    [CrossRef] [PubMed]
  21. R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005).
    [CrossRef]
  22. A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5 μm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements (IEEE Press, 2004), pp. 666-667.
    [CrossRef]
  23. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of C213H2 in the 1.5 μm region," Appl. Phys. B 80, 977-983 (2005).
    [CrossRef]
  24. C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, "High precision frequency measurements of the v1+v3 combination band of 13C2H2 in the 1.5 μm region," J. Mol. Spectrosc. 234, 143-148 (2005).
    [CrossRef]
  25. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, "Accurate absolute frequencies of the v1+v3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
    [CrossRef]
  26. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  27. A. J. Alcock, S. Chepurov, J. E. Bernard, A. Czajkowski, J. M. Fraser, P. Ma, A. A. Madej, I. V. Mitchell, P. J. Poole, I. T. Sorokina, and E. Sorokin, "An ultrashort pulse, Cr4+:YAG laser for high precision, infrared frequency interval measurements," Opt. Express 13, 8837-8844 (2005).
    [CrossRef] [PubMed]
  28. S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).
  29. L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
    [CrossRef]
  30. J. E. Bernard, A. A. Madej, P. Dubé, L. Marmet, A. Czajkowski, and R. S. Windeler, "Optical frequency comb measurements at 633 nm, 674 nm, and 1556 nm," in Proceedings of the IEEE International Frequency Control Symposium Jointly with the 17th European Frequency and Time Forum, J.R.Vig, ed. (IEEE Press, 2003), pp. 162-167
    [CrossRef]
  31. A. A. Madej, J. E. Bernard, L. Robertsson, L.-S. Ma, M. Zucco, and R. S. Windeler, "Long-term absolute frequency measurements of 633 nm iodine stabilized laser standards at NRC and demonstration of high reproducibility of such devices in international frequency measurements," Metrologia 41, 152-160 (2004).
    [CrossRef]
  32. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Krieger, 1991), p. 14.
  33. G. Herzberg, Ref. , p. 390.

2006 (1)

2005 (5)

A. J. Alcock, S. Chepurov, J. E. Bernard, A. Czajkowski, J. M. Fraser, P. Ma, A. A. Madej, I. V. Mitchell, P. J. Poole, I. T. Sorokina, and E. Sorokin, "An ultrashort pulse, Cr4+:YAG laser for high precision, infrared frequency interval measurements," Opt. Express 13, 8837-8844 (2005).
[CrossRef] [PubMed]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, "Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser," Opt. Express 13, 9196-9201 (2005).
[CrossRef] [PubMed]

R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of C213H2 in the 1.5 μm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, "High precision frequency measurements of the v1+v3 combination band of 13C2H2 in the 1.5 μm region," J. Mol. Spectrosc. 234, 143-148 (2005).
[CrossRef]

2004 (4)

A. A. Madej, J. E. Bernard, L. Robertsson, L.-S. Ma, M. Zucco, and R. S. Windeler, "Long-term absolute frequency measurements of 633 nm iodine stabilized laser standards at NRC and demonstration of high reproducibility of such devices in international frequency measurements," Metrologia 41, 152-160 (2004).
[CrossRef]

A. Czajkowski, A. A. Madej, and P. Dube, "Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (v1+v3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, and W. R. C. Rowley, "Absolute frequency measurement of a 1.5-μm acetylene standard by use of a combined frequency chain and femtosecond comb," Opt. Lett. 29, 566-568 (2004).
[CrossRef] [PubMed]

2003 (3)

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
[CrossRef]

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

T. J. Quinn, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)," Metrologia 40, 103-133 (2003).
[CrossRef]

2002 (1)

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54-μm Er-Yb laser against Doppler-free C213H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

1999 (2)

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Acef, O.

A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
[CrossRef]

Alcock, A. J.

Awaji, Y.

Balling, P.

Bartels, A.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

Barwood, G. P.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, "High precision frequency measurements of the v1+v3 combination band of 13C2H2 in the 1.5 μm region," J. Mol. Spectrosc. 234, 143-148 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of C213H2 in the 1.5 μm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, and W. R. C. Rowley, "Absolute frequency measurement of a 1.5-μm acetylene standard by use of a combined frequency chain and femtosecond comb," Opt. Lett. 29, 566-568 (2004).
[CrossRef] [PubMed]

Bava, E.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54-μm Er-Yb laser against Doppler-free C213H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

Bergquist, J. C.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

Bernard, J. E.

A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, "Accurate absolute frequencies of the v1+v3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
[CrossRef]

A. J. Alcock, S. Chepurov, J. E. Bernard, A. Czajkowski, J. M. Fraser, P. Ma, A. A. Madej, I. V. Mitchell, P. J. Poole, I. T. Sorokina, and E. Sorokin, "An ultrashort pulse, Cr4+:YAG laser for high precision, infrared frequency interval measurements," Opt. Express 13, 8837-8844 (2005).
[CrossRef] [PubMed]

A. A. Madej, J. E. Bernard, L. Robertsson, L.-S. Ma, M. Zucco, and R. S. Windeler, "Long-term absolute frequency measurements of 633 nm iodine stabilized laser standards at NRC and demonstration of high reproducibility of such devices in international frequency measurements," Metrologia 41, 152-160 (2004).
[CrossRef]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

J. E. Bernard, A. A. Madej, P. Dubé, L. Marmet, A. Czajkowski, and R. S. Windeler, "Optical frequency comb measurements at 633 nm, 674 nm, and 1556 nm," in Proceedings of the IEEE International Frequency Control Symposium Jointly with the 17th European Frequency and Time Forum, J.R.Vig, ed. (IEEE Press, 2003), pp. 162-167
[CrossRef]

Chartier, J.-M.

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
[CrossRef]

Chepurov, S.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Curtis, E. A.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

Czajkowski, A.

A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, "Accurate absolute frequencies of the v1+v3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
[CrossRef]

A. J. Alcock, S. Chepurov, J. E. Bernard, A. Czajkowski, J. M. Fraser, P. Ma, A. A. Madej, I. V. Mitchell, P. J. Poole, I. T. Sorokina, and E. Sorokin, "An ultrashort pulse, Cr4+:YAG laser for high precision, infrared frequency interval measurements," Opt. Express 13, 8837-8844 (2005).
[CrossRef] [PubMed]

A. Czajkowski, A. A. Madej, and P. Dube, "Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (v1+v3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

J. E. Bernard, A. A. Madej, P. Dubé, L. Marmet, A. Czajkowski, and R. S. Windeler, "Optical frequency comb measurements at 633 nm, 674 nm, and 1556 nm," in Proceedings of the IEEE International Frequency Control Symposium Jointly with the 17th European Frequency and Time Forum, J.R.Vig, ed. (IEEE Press, 2003), pp. 162-167
[CrossRef]

de Labachelerie, M.

Demtroder, W.

W. Demtroder, Laser Spectroscopy (Springer, 1996) pp. 436-454 and references therein.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Dube, P.

A. Czajkowski, A. A. Madej, and P. Dube, "Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (v1+v3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

Dubé, P.

J. E. Bernard, A. A. Madej, P. Dubé, L. Marmet, A. Czajkowski, and R. S. Windeler, "Optical frequency comb measurements at 633 nm, 674 nm, and 1556 nm," in Proceedings of the IEEE International Frequency Control Symposium Jointly with the 17th European Frequency and Time Forum, J.R.Vig, ed. (IEEE Press, 2003), pp. 162-167
[CrossRef]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Duxbury, G.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, "A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands," in Frequency-Stabilized Lasers and their Applications, Y.C.Chung, ed., Proc. SPIE 1837, 106-114 (1992).

Edwards, C. S.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of C213H2 in the 1.5 μm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, "High precision frequency measurements of the v1+v3 combination band of 13C2H2 in the 1.5 μm region," J. Mol. Spectrosc. 234, 143-148 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, and W. R. C. Rowley, "Absolute frequency measurement of a 1.5-μm acetylene standard by use of a combined frequency chain and femtosecond comb," Opt. Lett. 29, 566-568 (2004).
[CrossRef] [PubMed]

Felder, R.

R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005).
[CrossRef]

A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
[CrossRef]

Ferrario, F.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54-μm Er-Yb laser against Doppler-free C213H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

Fischer, M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Fraser, J. M.

Galzerano, G.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54-μm Er-Yb laser against Doppler-free C213H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, Atlas du Spectre d'Absorption de la Molécule d'Iode (Editions du Centre National de la Recherche Scientifique, 1978).

Gill, P.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, "High precision frequency measurements of the v1+v3 combination band of 13C2H2 in the 1.5 μm region," J. Mol. Spectrosc. 234, 143-148 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of C213H2 in the 1.5 μm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, and W. R. C. Rowley, "Absolute frequency measurement of a 1.5-μm acetylene standard by use of a combined frequency chain and femtosecond comb," Opt. Lett. 29, 566-568 (2004).
[CrossRef] [PubMed]

Guo, R.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Hansell, P. S.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, "A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands," in Frequency-Stabilized Lasers and their Applications, Y.C.Chung, ed., Proc. SPIE 1837, 106-114 (1992).

Harada, S.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Krieger, 1991), p. 14.

G. Herzberg, Ref. , p. 390.

Hollberg, L.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

Holzwarth, R.

Hong, F.-L.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
[CrossRef]

A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5 μm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements (IEEE Press, 2004), pp. 666-667.
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Huang, G.

Ikegami, T.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Imai, K.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

Inaba, H.

Jiang, J.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Karlsson, H.

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
[CrossRef]

Keller, U.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Knight, D. J. E.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, "A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands," in Frequency-Stabilized Lasers and their Applications, Y.C.Chung, ed., Proc. SPIE 1837, 106-114 (1992).

Kourogi, M.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, "Accurate optical frequency atlas of the 1.5-μm bands of acetylene," J. Opt. Soc. Am. B 13, 2708-2714 (1996).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Kubina, P.

Kurosu, T.

T. Kurosu and U. Sterr, "Frequency-stabilization of a 1.54 micrometer DFB-laser diode to Doppler-free absorption lines of acetylene," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 248-254 (2001).

Lawrence, M.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, "A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands," in Frequency-Stabilized Lasers and their Applications, Y.C.Chung, ed., Proc. SPIE 1837, 106-114 (1992).

Lea, S. N.

Leeson, H. C.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, "A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands," in Frequency-Stabilized Lasers and their Applications, Y.C.Chung, ed., Proc. SPIE 1837, 106-114 (1992).

Luc, P.

S. Gerstenkorn and P. Luc, Atlas du Spectre d'Absorption de la Molécule d'Iode (Editions du Centre National de la Recherche Scientifique, 1978).

Ma, L.-S.

A. A. Madej, J. E. Bernard, L. Robertsson, L.-S. Ma, M. Zucco, and R. S. Windeler, "Long-term absolute frequency measurements of 633 nm iodine stabilized laser standards at NRC and demonstration of high reproducibility of such devices in international frequency measurements," Metrologia 41, 152-160 (2004).
[CrossRef]

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
[CrossRef]

Ma, P.

Madej, A. A.

A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, "Accurate absolute frequencies of the v1+v3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006).
[CrossRef]

A. J. Alcock, S. Chepurov, J. E. Bernard, A. Czajkowski, J. M. Fraser, P. Ma, A. A. Madej, I. V. Mitchell, P. J. Poole, I. T. Sorokina, and E. Sorokin, "An ultrashort pulse, Cr4+:YAG laser for high precision, infrared frequency interval measurements," Opt. Express 13, 8837-8844 (2005).
[CrossRef] [PubMed]

A. A. Madej, J. E. Bernard, L. Robertsson, L.-S. Ma, M. Zucco, and R. S. Windeler, "Long-term absolute frequency measurements of 633 nm iodine stabilized laser standards at NRC and demonstration of high reproducibility of such devices in international frequency measurements," Metrologia 41, 152-160 (2004).
[CrossRef]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

A. Czajkowski, A. A. Madej, and P. Dube, "Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (v1+v3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

J. E. Bernard, A. A. Madej, P. Dubé, L. Marmet, A. Czajkowski, and R. S. Windeler, "Optical frequency comb measurements at 633 nm, 674 nm, and 1556 nm," in Proceedings of the IEEE International Frequency Control Symposium Jointly with the 17th European Frequency and Time Forum, J.R.Vig, ed. (IEEE Press, 2003), pp. 162-167
[CrossRef]

Marano, M.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54-μm Er-Yb laser against Doppler-free C213H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

Margolis, H. S.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, "High precision frequency measurements of the v1+v3 combination band of 13C2H2 in the 1.5 μm region," J. Mol. Spectrosc. 234, 143-148 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of C213H2 in the 1.5 μm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, and W. R. C. Rowley, "Absolute frequency measurement of a 1.5-μm acetylene standard by use of a combined frequency chain and femtosecond comb," Opt. Lett. 29, 566-568 (2004).
[CrossRef] [PubMed]

Marmet, L.

J. E. Bernard, A. A. Madej, P. Dubé, L. Marmet, A. Czajkowski, and R. S. Windeler, "Optical frequency comb measurements at 633 nm, 674 nm, and 1556 nm," in Proceedings of the IEEE International Frequency Control Symposium Jointly with the 17th European Frequency and Time Forum, J.R.Vig, ed. (IEEE Press, 2003), pp. 162-167
[CrossRef]

Matsumoto, H.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
[CrossRef]

A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5 μm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements (IEEE Press, 2004), pp. 666-667.
[CrossRef]

Meldau, J.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, "A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands," in Frequency-Stabilized Lasers and their Applications, Y.C.Chung, ed., Proc. SPIE 1837, 106-114 (1992).

Minoshima, K.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Mitchell, I. V.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Nakagawa, K.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, "Accurate optical frequency atlas of the 1.5-μm bands of acetylene," J. Opt. Soc. Am. B 13, 2708-2714 (1996).
[CrossRef]

M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, "High-frequency-stability laser at 1.5 μm using Doppler-free molecular lines," Opt. Lett. 20, 572-574 (1995).
[CrossRef]

M. de Labachelerie, K. Nakagawa, and M. Ohtsu, "Ultranarrow C213H2 saturated-absorption lines at 1.5 μm," Opt. Lett. 19, 840-842 (1994).
[CrossRef] [PubMed]

A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
[CrossRef]

A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5 μm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements (IEEE Press, 2004), pp. 666-667.
[CrossRef]

Oates, C. W.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

Ohtsu, M.

Okumura, K.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5 μm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements (IEEE Press, 2004), pp. 666-667.
[CrossRef]

A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
[CrossRef]

Onae, A.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54-μm Er-Yb laser against Doppler-free C213H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5 μm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements (IEEE Press, 2004), pp. 666-667.
[CrossRef]

A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
[CrossRef]

Picard, S.

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
[CrossRef]

Poole, P. J.

Prieto, E.

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
[CrossRef]

Quinn, T. J.

T. J. Quinn, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)," Metrologia 40, 103-133 (2003).
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Robertsson, L.

A. A. Madej, J. E. Bernard, L. Robertsson, L.-S. Ma, M. Zucco, and R. S. Windeler, "Long-term absolute frequency measurements of 633 nm iodine stabilized laser standards at NRC and demonstration of high reproducibility of such devices in international frequency measurements," Metrologia 41, 152-160 (2004).
[CrossRef]

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
[CrossRef]

Rowley, W. R. C.

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, "High precision frequency measurements of the v1+v3 combination band of 13C2H2 in the 1.5 μm region," J. Mol. Spectrosc. 234, 143-148 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of C213H2 in the 1.5 μm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, and W. R. C. Rowley, "Absolute frequency measurement of a 1.5-μm acetylene standard by use of a combined frequency chain and femtosecond comb," Opt. Lett. 29, 566-568 (2004).
[CrossRef] [PubMed]

Schibli, T. R.

Sorokin, E.

Sorokina, I. T.

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Sterr, U.

T. Kurosu and U. Sterr, "Frequency-stabilization of a 1.54 micrometer DFB-laser diode to Doppler-free absorption lines of acetylene," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 248-254 (2001).

Sugiyama, K.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
[CrossRef]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Svelto, C.

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54-μm Er-Yb laser against Doppler-free C213H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

Udem, Th.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

Vogel, K. R.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Widiyatomoko, B.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

Windeler, R. S.

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

A. A. Madej, J. E. Bernard, L. Robertsson, L.-S. Ma, M. Zucco, and R. S. Windeler, "Long-term absolute frequency measurements of 633 nm iodine stabilized laser standards at NRC and demonstration of high reproducibility of such devices in international frequency measurements," Metrologia 41, 152-160 (2004).
[CrossRef]

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

J. E. Bernard, A. A. Madej, P. Dubé, L. Marmet, A. Czajkowski, and R. S. Windeler, "Optical frequency comb measurements at 633 nm, 674 nm, and 1556 nm," in Proceedings of the IEEE International Frequency Control Symposium Jointly with the 17th European Frequency and Time Forum, J.R.Vig, ed. (IEEE Press, 2003), pp. 162-167
[CrossRef]

Yamaguchi, A.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

Yoda, J.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

Yoshida, M.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Zucco, M.

A. A. Madej, J. E. Bernard, L. Robertsson, L.-S. Ma, M. Zucco, and R. S. Windeler, "Long-term absolute frequency measurements of 633 nm iodine stabilized laser standards at NRC and demonstration of high reproducibility of such devices in international frequency measurements," Metrologia 41, 152-160 (2004).
[CrossRef]

Appl. Phys. B (4)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, "High-accuracy frequency atlas of C213H2 in the 1.5 μm region," Appl. Phys. B 80, 977-983 (2005).
[CrossRef]

A. Czajkowski, J. E. Bernard, A. A. Madej, and R. S. Windeler, "Absolute frequency measurement of acetylene transitions in the region of 1540 nm," Appl. Phys. B 79, 45-50 (2004).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, "Toward an accurate frequency standard at 1.5 μm based on acetylene overtone band transition," IEEE Trans. Instrum. Meas. 48, 563-566 (1999).
[CrossRef]

L.-S. Ma, L. Robertsson, S. Picard, J.-M. Chartier, H. Karlsson, E. Prieto, and R. S. Windeler, "The BIPM laser standards at 633 nm and 532 nm simultaneously linked to the SI second using a femtosecond laser in an optical clock configuration," IEEE Trans. Instrum. Meas. 52, 232-235 (2003).
[CrossRef]

J. Mol. Spectrosc. (1)

C. S. Edwards, G. P. Barwood, H. S. Margolis, P. Gill, and W. R. C. Rowley, "High precision frequency measurements of the v1+v3 combination band of 13C2H2 in the 1.5 μm region," J. Mol. Spectrosc. 234, 143-148 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Metrologia (3)

A. A. Madej, J. E. Bernard, L. Robertsson, L.-S. Ma, M. Zucco, and R. S. Windeler, "Long-term absolute frequency measurements of 633 nm iodine stabilized laser standards at NRC and demonstration of high reproducibility of such devices in international frequency measurements," Metrologia 41, 152-160 (2004).
[CrossRef]

T. J. Quinn, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)," Metrologia 40, 103-133 (2003).
[CrossRef]

R. Felder, "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)," Metrologia 42, 323-325 (2005).
[CrossRef]

Opt. Commun. (3)

G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, "Frequency stabilization of a 1.54-μm Er-Yb laser against Doppler-free C213H2 lines," Opt. Commun. 209, 411-416 (2002).
[CrossRef]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

A. Czajkowski, A. A. Madej, and P. Dube, "Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (v1+v3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other (11)

G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Krieger, 1991), p. 14.

G. Herzberg, Ref. , p. 390.

J. E. Bernard, A. A. Madej, P. Dubé, L. Marmet, A. Czajkowski, and R. S. Windeler, "Optical frequency comb measurements at 633 nm, 674 nm, and 1556 nm," in Proceedings of the IEEE International Frequency Control Symposium Jointly with the 17th European Frequency and Time Forum, J.R.Vig, ed. (IEEE Press, 2003), pp. 162-167
[CrossRef]

T. Kurosu and U. Sterr, "Frequency-stabilization of a 1.54 micrometer DFB-laser diode to Doppler-free absorption lines of acetylene," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 248-254 (2001).

W. Demtroder, Laser Spectroscopy (Springer, 1996) pp. 436-454 and references therein.

P.Gill, ed., Proceedings of the Sixth Symposium on Frequency Standards and Metrology (World Scientific, 2002) and references therein.

D. J. E. Knight, P. S. Hansell, H. C. Leeson, G. Duxbury, J. Meldau, and M. Lawrence, "A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands," in Frequency-Stabilized Lasers and their Applications, Y.C.Chung, ed., Proc. SPIE 1837, 106-114 (1992).

S. Gerstenkorn and P. Luc, Atlas du Spectre d'Absorption de la Molécule d'Iode (Editions du Centre National de la Recherche Scientifique, 1978).

A. Onae, K. Okumura, K. Sugiyama, F.-L. Hong, H. Matsumoto, K. Nakagawa, R. Felder, and O. Acef, "Optical frequency standard at 1.5 μm based on Doppler-free acetylene absorption," in Proceedings of the Sixth Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 445-452.
[CrossRef]

A. Onae, K. Okumura, F.-L. Hong, H. Matsumoto, and K. Nakagawa, "Accurate frequency atlas of 1.5 μm band of acetylene measured by a mode-locked fiber laser," in Digest of the Conference on Precision Electromagnetic Measurements (IEEE Press, 2004), pp. 666-667.
[CrossRef]

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, "A compact femtosecond-laser-based optical clockwork," in Laser Frequency Stabilization, Standards, Measurement, and Applications, J.L.Hall and J.Ye, eds., Proc. SPIE 4269, 77-83 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the acetylene-stabilized optical frequency standard. PZT, piezoelectric transducer; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Observed third-harmonic demodulated line shapes of the P ( 3 ) C 2 12 H 2 saturated absorption line. Peak-to-peak modulation excursion = 1.7 MHz , cell pressure = 2.7 Pa , one-way intracavity power = 0.2 W .

Fig. 3
Fig. 3

Diagram of the setup used to measure frequency differences between laser systems 1 and 2 using a mode-locked Cr:YAG laser.

Fig. 4
Fig. 4

Plotted differences in the measured frequencies of the ν 1 + ν 3 band C 2 12 H 2 lines determined in this work and those obtained in Ref. [24].

Tables (3)

Tables Icon

Table 1 Summary of Estimated Systematic Uncertainties Associated with the Absolute Frequency Measurement of the Reference Lines in Acetylene

Tables Icon

Table 2 Summary of the Measured Frequency Differences and Absolute Frequencies of the ν 1 + ν 3 Band Transitions in C 2 12 H 2 a

Tables Icon

Table 3 Comparison of Molecular Constant Results for the Ground and Excited States of the ν 1 + ν 3 Band of C 2 12 H 2

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f 1 [ X ] f 2 [ P ( 16 ) ] = ( n m ) * f rep ± ( f track + 20 MHz ) ,
ν 2 [ P ( 16 ) ] = 194 369 569 385 950 ± 1200 Hz ( 1 σ ) .
E ( J ) h c = B J ( J + 1 ) D J 2 ( J + 1 ) 2 + H J 3 ( J + 1 ) 3 + L J 4 ( J + 1 ) 4 + .
Δ 2 F = ν R ( J 1 ) ν P ( J + 1 ) = ( 4 B 6 D + 27 4 H + 27 4 L ) ( J + 1 2 ) + ( 8 D + 34 H + 75 L ) ( J + 1 2 ) 3 + ( 12 H + 100 L ) ( J + 1 2 ) 5 + 16 L ( J + 1 2 ) 7 ,
Δ 2 F = ν R ( J ) ν P ( J ) = ( 4 B 6 D + 27 4 H + 27 4 L ) ( J + 1 2 ) + ( 8 D + 34 H + 75 L ) ( J + 1 2 ) 3 + ( 12 H + 100 L ) ( J + 1 2 ) 5 + 16 L ( J + 1 2 ) 7 ,
ν = ν o + ( B + B ) m + ( B B D + D ) m 2 ( 2 D + 2 D H H ) m 3 + ( D D + 3 H 3 H + L L ) m 4 + ( 3 H + 3 H + 4 L + 4 L ) m 5 + ( H H + 6 L 6 L ) m 6 + ( 4 L + 4 L ) m 7 + ( L L ) m 8 ,

Metrics