Abstract

Many laser interaction models assume that incident focused laser fields are Gaussian and use either the approximate TEM00 series model or the exact integral Gaussian angular-spectrum solution. Many practical laser systems, however, produce flat-top transverse intensity profiles, and indeed, such profiles are often desired. Here, an exact, integral solution is derived for all of the vector components having a general flattened Gaussian profile using the angular-spectrum method. This solution includes the pure and annular Gaussian modes as special cases. The resulting integrals are solved for tight focusing conditions exactly by making use of a Fourier–Gegenbauer expansion. This technique follows closely that of Sepke and Umstadter [Opt. Lett. 31, 1447 (2006)] but, by redefining the expansion coefficients, the simplicity of the model is greatly enhanced and the computation time reduced by roughly a factor of 2 beyond the 2 orders of magnitude improvement obtained previously. This series solution is stable at all points and converges after S20w0 terms, where w0 is the 1e waist normalized to the laser wavelength.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (52)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription