Abstract

Turn-off oscillations are dynamical phenomena that appear when modulating the current applied to vertical-cavity surface-emitting lasers (VCSELs). These phenomena consist of the generation of significant pulsed optical power, while the laser current remains at the lowest (bias) value during the modulation. We study the dependence of turn-off oscillations on the bias current for both single-mode and multitransverse-mode VCSELs. We show that as the bias current increases, the maximum power of these oscillations obtained with multimode lasers becomes similar to the one obtained with single-mode lasers. A criterion for obtaining the bias current above which turn-off oscillations are no longer dominated by spatial effects is given. We also show that the transverse spatial profile of the light emitted in multimode VCSELs during turn-off oscillations depends on the value of the bias current.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, "Surface-emitting laser—its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron. 6, 1201-1215 (2000).
    [CrossRef]
  2. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
    [CrossRef]
  3. D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
    [CrossRef]
  4. J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
    [CrossRef]
  5. J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
    [CrossRef]
  6. A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 12, 1741-1746 (1995).
    [CrossRef]
  7. D. S. Smith, "Characterizing VCSELs for high-speed interconnects," in NIST Symposium on High Speed Optical Interconnects, Boulder, Colorado (National Institute of Standards and Technology, 1995).
  8. J. K. Guenter and J. Tatum, "Modulating VCSELs," Application Sheet, Advanced Optical Components, http://www.adopco.com/publication/documents/ModulatingVCSELs.pdf.
  9. J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Low Temp. Phys. 17, 95-101 (1999).
  10. J. A. Lehman and R. A. Morgan, "850 nm VCSELs for high speed data communication applications," in Vertical-Cavity Surface-Emitting Lasers: Technology and Applications (CRC Press, 2000), p. 133.
  11. M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, "Electrically steerable lasers using wide aperture VCSELs," IEEE Photon. Technol. Lett. 13, 544-546 (2001).
    [CrossRef]
  12. A. Hsu, S. L. Chuang, E. Borisch, K. P. Jackson, and S. Kerchberger, "Bias dependence of mode dynamics in a vertical-cavity surface-emitting laser," IEE Proc.: Optoelectron. 151, 138-142 (2004).
    [CrossRef]
  13. A. Valle and L. Pesquera, "Turn-off transients in current-modulated vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001).
    [CrossRef]
  14. A. Valle, J. Mulet, L. Pesquera, and S. Balle, "Diffusive turn-off transients in current modulated multitransverse mode VCSELs," in Proc. SPIE 4649, 50-61 (2002).
    [CrossRef]
  15. J. Mulet and S. Balle, "Transverse mode dynamics in vertical-cavity surface-emitting lasers: spatio-temporal versus modal expansion description," Phys. Rev. A 66, 053802 (2002).
    [CrossRef]
  16. J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002).
    [CrossRef]
  17. M. X. Jungo, D. Erni, and W. Bachtold, "VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model," IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
    [CrossRef]
  18. C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
    [CrossRef]
  19. A. Valle and L. Pesquera, "Bit error rate performance of vertical-cavity surface-emitting lasers modulated at high speed," in Proc. SPIE 5453, 258-269 (2004).
    [CrossRef]
  20. A. Valle, J. Sarma, and K. A. Shore, "Spatial hole burning effects in the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995).
    [CrossRef]
  21. A. Valle, "Selection and modulation of high order transverse modes in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 34, 1924-1932 (1998).
    [CrossRef]
  22. K. J. Ebeling, "Analysis of vertical cavity surface emitting laser diodes," in Semiconductor Quantum Optoelectronics: from Quantum Physics to Smart Devices (SUSSP and Institute of Physics, 1999), p. 312.
  23. A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical-cavity surface-emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
    [CrossRef]
  24. K. D. Choquette and R. E. Leibenguth, "Control of vertical-cavity polarization with anisotropic transverse geometries," IEEE Photon. Technol. Lett. 6, 40-42 (1994).
    [CrossRef]
  25. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995).
    [CrossRef]
  26. H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
    [CrossRef]
  27. H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
    [CrossRef]

2005 (1)

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

2004 (2)

A. Valle and L. Pesquera, "Bit error rate performance of vertical-cavity surface-emitting lasers modulated at high speed," in Proc. SPIE 5453, 258-269 (2004).
[CrossRef]

A. Hsu, S. L. Chuang, E. Borisch, K. P. Jackson, and S. Kerchberger, "Bias dependence of mode dynamics in a vertical-cavity surface-emitting laser," IEE Proc.: Optoelectron. 151, 138-142 (2004).
[CrossRef]

2003 (1)

M. X. Jungo, D. Erni, and W. Bachtold, "VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model," IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

2002 (3)

A. Valle, J. Mulet, L. Pesquera, and S. Balle, "Diffusive turn-off transients in current modulated multitransverse mode VCSELs," in Proc. SPIE 4649, 50-61 (2002).
[CrossRef]

J. Mulet and S. Balle, "Transverse mode dynamics in vertical-cavity surface-emitting lasers: spatio-temporal versus modal expansion description," Phys. Rev. A 66, 053802 (2002).
[CrossRef]

J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002).
[CrossRef]

2001 (3)

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, "Electrically steerable lasers using wide aperture VCSELs," IEEE Photon. Technol. Lett. 13, 544-546 (2001).
[CrossRef]

A. Valle and L. Pesquera, "Turn-off transients in current-modulated vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001).
[CrossRef]

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
[CrossRef]

2000 (2)

K. Iga, "Surface-emitting laser—its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron. 6, 1201-1215 (2000).
[CrossRef]

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

1999 (2)

J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Low Temp. Phys. 17, 95-101 (1999).

H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
[CrossRef]

1998 (1)

A. Valle, "Selection and modulation of high order transverse modes in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 34, 1924-1932 (1998).
[CrossRef]

1997 (1)

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

1995 (4)

A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 12, 1741-1746 (1995).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical-cavity surface-emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Spatial hole burning effects in the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995).
[CrossRef]

1994 (1)

K. D. Choquette and R. E. Leibenguth, "Control of vertical-cavity polarization with anisotropic transverse geometries," IEEE Photon. Technol. Lett. 6, 40-42 (1994).
[CrossRef]

1993 (1)

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

1991 (1)

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Allerman, A. A.

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, "Electrically steerable lasers using wide aperture VCSELs," IEEE Photon. Technol. Lett. 13, 544-546 (2001).
[CrossRef]

Asom, M.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

Bachtold, W.

M. X. Jungo, D. Erni, and W. Bachtold, "VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model," IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

Balle, S.

J. Mulet and S. Balle, "Transverse mode dynamics in vertical-cavity surface-emitting lasers: spatio-temporal versus modal expansion description," Phys. Rev. A 66, 053802 (2002).
[CrossRef]

A. Valle, J. Mulet, L. Pesquera, and S. Balle, "Diffusive turn-off transients in current modulated multitransverse mode VCSELs," in Proc. SPIE 4649, 50-61 (2002).
[CrossRef]

Bengtsson, J.

J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002).
[CrossRef]

Borisch, E.

A. Hsu, S. L. Chuang, E. Borisch, K. P. Jackson, and S. Kerchberger, "Bias dependence of mode dynamics in a vertical-cavity surface-emitting laser," IEE Proc.: Optoelectron. 151, 138-142 (2004).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Choquette, K. D.

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, "Electrically steerable lasers using wide aperture VCSELs," IEEE Photon. Technol. Lett. 13, 544-546 (2001).
[CrossRef]

K. D. Choquette and R. E. Leibenguth, "Control of vertical-cavity polarization with anisotropic transverse geometries," IEEE Photon. Technol. Lett. 6, 40-42 (1994).
[CrossRef]

Chuang, S. L.

A. Hsu, S. L. Chuang, E. Borisch, K. P. Jackson, and S. Kerchberger, "Bias dependence of mode dynamics in a vertical-cavity surface-emitting laser," IEE Proc.: Optoelectron. 151, 138-142 (2004).
[CrossRef]

Cohen, M. I.

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, "Electrically steerable lasers using wide aperture VCSELs," IEEE Photon. Technol. Lett. 13, 544-546 (2001).
[CrossRef]

Ebeling, K. J.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
[CrossRef]

H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
[CrossRef]

K. J. Ebeling, "Analysis of vertical cavity surface emitting laser diodes," in Semiconductor Quantum Optoelectronics: from Quantum Physics to Smart Devices (SUSSP and Institute of Physics, 1999), p. 312.

Erni, D.

M. X. Jungo, D. Erni, and W. Bachtold, "VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model," IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Ghisoni, M.

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

Grabherr, M.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
[CrossRef]

H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
[CrossRef]

Guenter, J.

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

Guenter, J. K.

J. K. Guenter and J. Tatum, "Modulating VCSELs," Application Sheet, Advanced Optical Components, http://www.adopco.com/publication/documents/ModulatingVCSELs.pdf.

Gustavsson, J. S.

J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002).
[CrossRef]

Harbison, J. P.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Harton, A. V.

J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Low Temp. Phys. 17, 95-101 (1999).

Hasnain, G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Hatori, N.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Hatzikonstantinidou, S.

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

Hayashi, Y.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Hsu, A.

A. Hsu, S. L. Chuang, E. Borisch, K. P. Jackson, and S. Kerchberger, "Bias dependence of mode dynamics in a vertical-cavity surface-emitting laser," IEE Proc.: Optoelectron. 151, 138-142 (2004).
[CrossRef]

Iga, K.

K. Iga, "Surface-emitting laser—its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron. 6, 1201-1215 (2000).
[CrossRef]

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Jackson, K. P.

A. Hsu, S. L. Chuang, E. Borisch, K. P. Jackson, and S. Kerchberger, "Bias dependence of mode dynamics in a vertical-cavity surface-emitting laser," IEE Proc.: Optoelectron. 151, 138-142 (2004).
[CrossRef]

Jagadish, C.

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, "Electrically steerable lasers using wide aperture VCSELs," IEEE Photon. Technol. Lett. 13, 544-546 (2001).
[CrossRef]

Jager, R.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
[CrossRef]

H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
[CrossRef]

Johnson, R.

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

Jonsson, J.

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

Jungo, M. X.

M. X. Jungo, D. Erni, and W. Bachtold, "VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model," IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

Kang, S. M.

J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Low Temp. Phys. 17, 95-101 (1999).

Kerchberger, S.

A. Hsu, S. L. Chuang, E. Borisch, K. P. Jackson, and S. Kerchberger, "Bias dependence of mode dynamics in a vertical-cavity surface-emitting laser," IEE Proc.: Optoelectron. 151, 138-142 (2004).
[CrossRef]

Kojima, K.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

Koyama, F.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Kullander-Sjober, A.

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

Larsson, A.

J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002).
[CrossRef]

H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
[CrossRef]

Lehman, J. A.

J. A. Lehman and R. A. Morgan, "850 nm VCSELs for high speed data communication applications," in Vertical-Cavity Surface-Emitting Lasers: Technology and Applications (CRC Press, 2000), p. 133.

Leibenguth, R. E.

K. D. Choquette and R. E. Leibenguth, "Control of vertical-cavity polarization with anisotropic transverse geometries," IEEE Photon. Technol. Lett. 6, 40-42 (1994).
[CrossRef]

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

Mahmoud, S. W. Z.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
[CrossRef]

Martinsson, H.

H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
[CrossRef]

Mena, P. V.

J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Low Temp. Phys. 17, 95-101 (1999).

Michalzik, R.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
[CrossRef]

H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
[CrossRef]

Morgan, R. A.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

J. A. Lehman and R. A. Morgan, "850 nm VCSELs for high speed data communication applications," in Vertical-Cavity Surface-Emitting Lasers: Technology and Applications (CRC Press, 2000), p. 133.

Morikuni, J. J.

J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Low Temp. Phys. 17, 95-101 (1999).

Mukaihara, T.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Mulet, J.

J. Mulet and S. Balle, "Transverse mode dynamics in vertical-cavity surface-emitting lasers: spatio-temporal versus modal expansion description," Phys. Rev. A 66, 053802 (2002).
[CrossRef]

A. Valle, J. Mulet, L. Pesquera, and S. Balle, "Diffusive turn-off transients in current modulated multitransverse mode VCSELs," in Proc. SPIE 4649, 50-61 (2002).
[CrossRef]

Ohnoki, N.

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995).
[CrossRef]

Penty, R. V.

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

Pesquera, L.

A. Valle and L. Pesquera, "Bit error rate performance of vertical-cavity surface-emitting lasers modulated at high speed," in Proc. SPIE 5453, 258-269 (2004).
[CrossRef]

A. Valle, J. Mulet, L. Pesquera, and S. Balle, "Diffusive turn-off transients in current modulated multitransverse mode VCSELs," in Proc. SPIE 4649, 50-61 (2002).
[CrossRef]

A. Valle and L. Pesquera, "Turn-off transients in current-modulated vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001).
[CrossRef]

Risberg, A.

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

Sarma, J.

A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 12, 1741-1746 (1995).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Spatial hole burning effects in the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical-cavity surface-emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

Shore, K. A.

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical-cavity surface-emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Spatial hole burning effects in the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 12, 1741-1746 (1995).
[CrossRef]

Smith, D.

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

Smith, D. S.

D. S. Smith, "Characterizing VCSELs for high-speed interconnects," in NIST Symposium on High Speed Optical Interconnects, Boulder, Colorado (National Institute of Standards and Technology, 1995).

Stevens, R.

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

Streubel, K.

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

Sveijer, J.

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

Tatum, J.

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

J. K. Guenter and J. Tatum, "Modulating VCSELs," Application Sheet, Advanced Optical Components, http://www.adopco.com/publication/documents/ModulatingVCSELs.pdf.

Tee, C. W.

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

Unold, H. J.

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
[CrossRef]

Vakhshoori, D.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

Valle, A.

A. Valle and L. Pesquera, "Bit error rate performance of vertical-cavity surface-emitting lasers modulated at high speed," in Proc. SPIE 5453, 258-269 (2004).
[CrossRef]

A. Valle, J. Mulet, L. Pesquera, and S. Balle, "Diffusive turn-off transients in current modulated multitransverse mode VCSELs," in Proc. SPIE 4649, 50-61 (2002).
[CrossRef]

A. Valle and L. Pesquera, "Turn-off transients in current-modulated vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001).
[CrossRef]

A. Valle, "Selection and modulation of high order transverse modes in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 34, 1924-1932 (1998).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical-cavity surface-emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Spatial hole burning effects in the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Secondary pulsations driven by spatial hole burning in modulated vertical-cavity surface-emitting lasers," J. Opt. Soc. Am. B 12, 1741-1746 (1995).
[CrossRef]

Von Lehmen, A. C.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

von Wurtemberg, R. M.

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

Vukusic, J. A.

J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002).
[CrossRef]

H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
[CrossRef]

White, I. H.

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

Wyatt, K. W.

J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Low Temp. Phys. 17, 95-101 (1999).

Wynn, J. D.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

Yu, S. F.

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

Zydzik, G. J.

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

Appl. Phys. Lett. (2)

D. Vakhshoori, J. D. Wynn, G. J. Zydzik, M. Asom, K. Kojima, R. E. Leibenguth, and R. A. Morgan, "Top-surface emitting lasers with 1.9 V threshold voltage and the effect of spatial-hole burning on their transverse mode operation and efficiencies," Appl. Phys. Lett. 62, 1448-1450 (1993).
[CrossRef]

A. Valle and L. Pesquera, "Turn-off transients in current-modulated vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 79, 3914-3916 (2001).
[CrossRef]

IEE Proc.: Optoelectron. (1)

A. Hsu, S. L. Chuang, E. Borisch, K. P. Jackson, and S. Kerchberger, "Bias dependence of mode dynamics in a vertical-cavity surface-emitting laser," IEE Proc.: Optoelectron. 151, 138-142 (2004).
[CrossRef]

IEEE J. Quantum Electron. (5)

J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38, 203-212 (2002).
[CrossRef]

C. W. Tee, S. F. Yu, R. V. Penty, and I. H. White, "Transient response of ARROW VCSELs," IEEE J. Quantum Electron. 41, 140-147 (2005).
[CrossRef]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization and transverse mode characteristics of vertical-cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991).
[CrossRef]

A. Valle, J. Sarma, and K. A. Shore, "Spatial hole burning effects in the dynamics of vertical cavity surface-emitting laser diodes," IEEE J. Quantum Electron. 31, 1423-1431 (1995).
[CrossRef]

A. Valle, "Selection and modulation of high order transverse modes in vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 34, 1924-1932 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of VCSELs using a birefringent metal/dielectric polarizer loaded on top distributed-Bragg reflector," IEEE J. Sel. Top. Quantum Electron. 1, 667-673 (1995).
[CrossRef]

H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Grabherr, R. Michalzik, and K. J. Ebeling, "Large-area single-mode VCSELs and the self-aligned surface relief," IEEE J. Sel. Top. Quantum Electron. 7, 386-392 (2001).
[CrossRef]

K. Iga, "Surface-emitting laser—its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron. 6, 1201-1215 (2000).
[CrossRef]

M. X. Jungo, D. Erni, and W. Bachtold, "VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model," IEEE J. Sel. Top. Quantum Electron. 9, 939-948 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, "Electrically steerable lasers using wide aperture VCSELs," IEEE Photon. Technol. Lett. 13, 544-546 (2001).
[CrossRef]

K. D. Choquette and R. E. Leibenguth, "Control of vertical-cavity polarization with anisotropic transverse geometries," IEEE Photon. Technol. Lett. 6, 40-42 (1994).
[CrossRef]

H. Martinsson, J. A. Vukusic, M. Grabherr, R. Michalzik, R. Jager, K. J. Ebeling, and A. Larsson, "Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief," IEEE Photon. Technol. Lett. 11, 1536-1538 (1999).
[CrossRef]

J. Low Temp. Phys. (1)

J. J. Morikuni, P. V. Mena, A. V. Harton, K. W. Wyatt, and S. M. Kang, "Spatially independent VCSEL models for the simulation of diffusive turn-off transients," J. Low Temp. Phys. 17, 95-101 (1999).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. Valle, J. Sarma, and K. A. Shore, "Dynamics of transverse mode competition in vertical-cavity surface-emitting laser diodes," Opt. Commun. 115, 297-302 (1995).
[CrossRef]

Phys. Rev. A (1)

J. Mulet and S. Balle, "Transverse mode dynamics in vertical-cavity surface-emitting lasers: spatio-temporal versus modal expansion description," Phys. Rev. A 66, 053802 (2002).
[CrossRef]

Proc. SPIE (4)

J. Jonsson, M. Ghisoni, S. Hatzikonstantinidou, A. Kullander-Sjober, A. Risberg, R. Stevens, K. Streubel, J. Sveijer, and R. M. von Wurtemberg, "Reliable vertical-cavity components for multimode data communications," Proc. SPIE 3946, 144-151 (2000).
[CrossRef]

J. Tatum, D. Smith, J. Guenter, and R. Johnson, "High speed characteristics of VCSELs," Proc. SPIE 3004, 151-159 (1997).
[CrossRef]

A. Valle, J. Mulet, L. Pesquera, and S. Balle, "Diffusive turn-off transients in current modulated multitransverse mode VCSELs," in Proc. SPIE 4649, 50-61 (2002).
[CrossRef]

A. Valle and L. Pesquera, "Bit error rate performance of vertical-cavity surface-emitting lasers modulated at high speed," in Proc. SPIE 5453, 258-269 (2004).
[CrossRef]

Other (4)

D. S. Smith, "Characterizing VCSELs for high-speed interconnects," in NIST Symposium on High Speed Optical Interconnects, Boulder, Colorado (National Institute of Standards and Technology, 1995).

J. K. Guenter and J. Tatum, "Modulating VCSELs," Application Sheet, Advanced Optical Components, http://www.adopco.com/publication/documents/ModulatingVCSELs.pdf.

J. A. Lehman and R. A. Morgan, "850 nm VCSELs for high speed data communication applications," in Vertical-Cavity Surface-Emitting Lasers: Technology and Applications (CRC Press, 2000), p. 133.

K. J. Ebeling, "Analysis of vertical cavity surface emitting laser diodes," in Semiconductor Quantum Optoelectronics: from Quantum Physics to Smart Devices (SUSSP and Institute of Physics, 1999), p. 312.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transverse modes resolved light-current characteristics of the VCSEL. The total power is also plotted with a thick line.

Fig. 2
Fig. 2

Dynamic evolution of (a) power and (b) modal gain for a single-mode, LP 01 , VCSEL. Power and modal gains for a multimode VCSEL are plotted in parts (c) and (d), respectively. In this figure, j on = 5 j th and j b = j th .

Fig. 3
Fig. 3

Dynamical evolution of the carrier density profile after the bias current has been applied. Results for single-mode and multimode VCSELs when j on = 5 j th and j b = j th have been plotted in (a) and (b), respectively. Results for single-mode and multimode VCSELs when j on = 5 j th and j b = 2 j th have been plotted in (c) and (d), respectively.

Fig. 4
Fig. 4

Dynamical evolution of (a) power and (b) modal gain for a single-mode, LP 01 , VCSEL. Power and modal gains for a multimode VCSEL are plotted in (c) and (d), respectively. In this figure j on = 5 j th and j b = 2 j th .

Fig. 5
Fig. 5

(a) Maximum power obtained during turn-off and (b) time at which the maximum power during turn-off appears, as a function of the injected current density during turn-on. Results for single-mode and multimode VCSELs for three different bias currents are shown.

Fig. 6
Fig. 6

(a) Maximum power obtained during turn-off and (b) time at which the maximum power during turn-off appears, as a function of the bias current density. Results for single-mode and multimode VCSELs for two different values of j on are shown. T b 2 is plotted with points in the inset of (b) for a single-mode VCSEL when j on = 3 j th . The linear fit obtained with points such that j b < 1.1 j th ( j b > 1.1 j th ) is plotted with the solid (dashed) line.

Fig. 7
Fig. 7

Bias current at which power of turn-off oscillations obtained with single-mode and multimode VCSELs becomes similar, as a function of j on .

Fig. 8
Fig. 8

Ratio of the power of the fundamental mode and the total power at the time at which the maximum power of the secondary pulsation appears, as a function of j b . Results for two different values of j on are shown.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( r , t ) = 1 2 m , n ψ m n ( r ) E m n ( t ) e i ω m n t + c.c. ,
d E m n ( t ) d t = 1 i α 2 [ v g Γ g m n ( t ) 1 τ p , m n ] E m n ( t ) ,
g m n ( t ) = 0 ψ m n 2 ( r ) g ( r , t ) r d r 0 ψ m n 2 ( r ) r d r ,
g ( r , t ) = A [ N ( r , t ) N t ] 1 + s m , n E m n ( t ) 2 ,
N ( r , t ) t = D r r [ r N ( r , t ) r ] N ( r , t ) τ n + j ( r ) e d m , n a m n ψ m n 2 ( r ) g ( r , t ) E m n ( t ) 2 ,

Metrics