Abstract

We present detailed theoretical studies of optical spatial solitons (SSs) supported by photoisomerization nonlinearity in a polymer sample. One-dimensional dark and bright SSs and their existence curves are presented. Several combinations of polarizations of the signal and background beams can be used to form the SSs.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
    [CrossRef] [PubMed]
  2. M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
    [CrossRef] [PubMed]
  3. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
    [CrossRef] [PubMed]
  4. Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
    [CrossRef] [PubMed]
  5. W. L. She, K. K. Lee, and W. K. Lee, "All optical quasi-steady-state photorefractive spatial solitons," Phys. Rev. Lett. 85, 2498-2501 (2000).
    [CrossRef] [PubMed]
  6. W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
    [CrossRef]
  7. M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
    [CrossRef]
  8. G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
    [CrossRef] [PubMed]
  9. Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Self-trapping of dark incoherent light beams," Science 280, 889-892 (1998).
    [CrossRef] [PubMed]
  10. M. Shih, M. Segev, and G. Salamo, "Three-dimensional spiraling of interacting spatial solitons," Phys. Rev. Lett. 78, 2551-2554 (1997).
    [CrossRef]
  11. T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, "Rotating optical soliton clusters," Phys. Rev. Lett. 87, 143901 (2001).
    [CrossRef] [PubMed]
  12. M. Mitchell, M. Segev, and D. N. Christodoulides, "Observation of multihump multimode solitons," Phys. Rev. Lett. 80, 4657-4660 (1998).
    [CrossRef]
  13. Z. Chen, H. Martin, E. D. Eugenieva, J. Xu, and J. Yang, "Formation of discrete solitons in light-induced photonic lattices," Opt. Express 13, 1816-1826 (2005).
    [CrossRef] [PubMed]
  14. M. Shih and F. Sheu, "Photorefractive polymeric optical solitons," Opt. Lett. 24, 1853-1855 (1999).
    [CrossRef]
  15. F. Sheu and M. Shih, "Photorefractive polymeric solitons supported by orientationally enhanced birefringent and electro-optic effects," J. Opt. Soc. Am. B 18, 785-793 (2001).
    [CrossRef]
  16. Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, "Self-trapping of light in an organic photorefractive glass," Opt. Lett. 28, 2509-2511 (2003).
    [CrossRef] [PubMed]
  17. M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, "Soliton-induced waveguides in an organic photorefractive glass," Opt. Lett. 30, 519-521 (2005).
    [CrossRef] [PubMed]
  18. T. M. Monro, C. Martijn de Sterke, and L. Poladian, "Self-writing a waveguide in glass using photosensitivity," Opt. Commun. 119, 523-526 (1995).
    [CrossRef]
  19. A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996).
    [CrossRef] [PubMed]
  20. A. S. Kewitsch and A. Yariv, "Nonlinear optical properties of photoresists for projection lithography," Appl. Phys. Lett. 68, 455-458 (1996).
    [CrossRef]
  21. S. Shoji, S. Kawata, A. A. Sukhorukov, and Y. S. Kivshar, "Self-written waveguides in photopolymerizable resins," Opt. Lett. 27, 185-187 (2002).
    [CrossRef]
  22. K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
    [CrossRef]
  23. K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, "Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation," Phys. Rev. Lett. 93, 143905 (2004).
    [CrossRef] [PubMed]
  24. M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, "Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides," Appl. Opt. 37, 1068-1073 (1998).
    [CrossRef]
  25. S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G. Adamovsky, "Dark spatial solitons in photopolymer films for optical interconnections," Opt. Eng. (Bellingham) 39, 616-623 (2000).
    [CrossRef]
  26. S. Sarkisov, M. Curley, A. Wilkosz, and V. Grymalsky, "Optical channel waveguides formed by upconverted photobleaching of dye-doped polymer film in regime of dark spatial soliton," Opt. Commun. 161, 132-140 (1999).
    [CrossRef]
  27. A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers," Chem. Rev. (Washington, D.C.) 102, 4139-4175 (2002).
  28. Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
    [CrossRef]
  29. R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, "Photoisomerization and second harmonic generation in disperse red one-doped and functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
    [CrossRef]
  30. L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, "Optically controlled photo-induced birefringence in photo-anisotropic materials," J. Mod. Opt. 35, 1789-1799 (1988).
    [CrossRef]
  31. X. S. Wang, W. L. She, and W. K. Lee, "Optical spatial solitons supported by photoisomerization nonlinearity in a polymer," Opt. Lett. 29, 277-279 (2004).
    [CrossRef] [PubMed]
  32. X. S. Wang and W. L. She, "Spontaneous one- and two-dimensional optical spatial solitons supported by photoisomerization nonlinearity in bulk polymer," Phys. Rev. E 71, 026601 (2005).
    [CrossRef]
  33. X. S. Wang, W. L. She, S. Wu, and F. Zeng, "Circularly polarized optical spatial solitons," Opt. Lett. 30, 863-865 (2005).
    [CrossRef] [PubMed]
  34. S. Bian and M. G. Kuzyk, "Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation," Appl. Phys. Lett. 85, 1104-1107 (2004).
    [CrossRef]
  35. S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady state conditions," Opt. Lett. 118, 569-576 (1995).

2005 (4)

2004 (3)

S. Bian and M. G. Kuzyk, "Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation," Appl. Phys. Lett. 85, 1104-1107 (2004).
[CrossRef]

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, "Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation," Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

X. S. Wang, W. L. She, and W. K. Lee, "Optical spatial solitons supported by photoisomerization nonlinearity in a polymer," Opt. Lett. 29, 277-279 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (3)

2001 (2)

F. Sheu and M. Shih, "Photorefractive polymeric solitons supported by orientationally enhanced birefringent and electro-optic effects," J. Opt. Soc. Am. B 18, 785-793 (2001).
[CrossRef]

T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, "Rotating optical soliton clusters," Phys. Rev. Lett. 87, 143901 (2001).
[CrossRef] [PubMed]

2000 (2)

W. L. She, K. K. Lee, and W. K. Lee, "All optical quasi-steady-state photorefractive spatial solitons," Phys. Rev. Lett. 85, 2498-2501 (2000).
[CrossRef] [PubMed]

S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G. Adamovsky, "Dark spatial solitons in photopolymer films for optical interconnections," Opt. Eng. (Bellingham) 39, 616-623 (2000).
[CrossRef]

1999 (4)

S. Sarkisov, M. Curley, A. Wilkosz, and V. Grymalsky, "Optical channel waveguides formed by upconverted photobleaching of dye-doped polymer film in regime of dark spatial soliton," Opt. Commun. 161, 132-140 (1999).
[CrossRef]

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

M. Shih and F. Sheu, "Photorefractive polymeric optical solitons," Opt. Lett. 24, 1853-1855 (1999).
[CrossRef]

1998 (3)

M. Mitchell, M. Segev, and D. N. Christodoulides, "Observation of multihump multimode solitons," Phys. Rev. Lett. 80, 4657-4660 (1998).
[CrossRef]

Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Self-trapping of dark incoherent light beams," Science 280, 889-892 (1998).
[CrossRef] [PubMed]

M. Nakanishi, O. Sugihara, N. Okamoto, and K. Hirota, "Ultraviolet photobleaching process of azo dye doped polymer and silica films for fabrication of nonlinear optical waveguides," Appl. Opt. 37, 1068-1073 (1998).
[CrossRef]

1997 (2)

M. Shih, M. Segev, and G. Salamo, "Three-dimensional spiraling of interacting spatial solitons," Phys. Rev. Lett. 78, 2551-2554 (1997).
[CrossRef]

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

1996 (3)

1995 (2)

S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady state conditions," Opt. Lett. 118, 569-576 (1995).

T. M. Monro, C. Martijn de Sterke, and L. Poladian, "Self-writing a waveguide in glass using photosensitivity," Opt. Commun. 119, 523-526 (1995).
[CrossRef]

1994 (2)

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

1993 (1)

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, "Photoisomerization and second harmonic generation in disperse red one-doped and functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

1992 (2)

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

1988 (1)

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, "Optically controlled photo-induced birefringence in photo-anisotropic materials," J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Adamovsky, G.

S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G. Adamovsky, "Dark spatial solitons in photopolymer films for optical interconnections," Opt. Eng. (Bellingham) 39, 616-623 (2000).
[CrossRef]

Asaro, M.

Bashaw, M. C.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Bian, S.

S. Bian and M. G. Kuzyk, "Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation," Appl. Phys. Lett. 85, 1104-1107 (2004).
[CrossRef]

Carmon, T.

T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, "Rotating optical soliton clusters," Phys. Rev. Lett. 87, 143901 (2001).
[CrossRef] [PubMed]

Carre, C.

Chen, Z.

Christodoulides, D. N.

Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Self-trapping of dark incoherent light beams," Science 280, 889-892 (1998).
[CrossRef] [PubMed]

M. Mitchell, M. Segev, and D. N. Christodoulides, "Observation of multihump multimode solitons," Phys. Rev. Lett. 80, 4657-4660 (1998).
[CrossRef]

S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady state conditions," Opt. Lett. 118, 569-576 (1995).

Coskun, T. H.

Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Self-trapping of dark incoherent light beams," Science 280, 889-892 (1998).
[CrossRef] [PubMed]

Cregut, O.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, "Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation," Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

Crégut, O.

Crosignani, B.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Curley, M.

S. Sarkisov, M. Curley, A. Wilkosz, and V. Grymalsky, "Optical channel waveguides formed by upconverted photobleaching of dye-doped polymer film in regime of dark spatial soliton," Opt. Commun. 161, 132-140 (1999).
[CrossRef]

Curley, M. J.

S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G. Adamovsky, "Dark spatial solitons in photopolymer films for optical interconnections," Opt. Eng. (Bellingham) 39, 616-623 (2000).
[CrossRef]

de Sterke, C. Martijn

T. M. Monro, C. Martijn de Sterke, and L. Poladian, "Self-writing a waveguide in glass using photosensitivity," Opt. Commun. 119, 523-526 (1995).
[CrossRef]

Delaire, J. A.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, "Photoisomerization and second harmonic generation in disperse red one-doped and functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

Diggs, D. E.

S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G. Adamovsky, "Dark spatial solitons in photopolymer films for optical interconnections," Opt. Eng. (Bellingham) 39, 616-623 (2000).
[CrossRef]

Dorkenoo, K.

Dorkenoo, K. D.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, "Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation," Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

Dragostinova, V.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, "Optically controlled photo-induced birefringence in photo-anisotropic materials," J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Dumont, M.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, "Photoisomerization and second harmonic generation in disperse red one-doped and functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

Eugenieva, E. D.

Fejer, M. M.

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Fort, A.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, "Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation," Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Garrett, M. H.

Gillot, F.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, "Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation," Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Grimalsky, V. V.

S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G. Adamovsky, "Dark spatial solitons in photopolymer films for optical interconnections," Opt. Eng. (Bellingham) 39, 616-623 (2000).
[CrossRef]

Grymalsky, V.

S. Sarkisov, M. Curley, A. Wilkosz, and V. Grymalsky, "Optical channel waveguides formed by upconverted photobleaching of dye-doped polymer film in regime of dark spatial soliton," Opt. Commun. 161, 132-140 (1999).
[CrossRef]

He, M.

Hirota, K.

Kawata, S.

Kewitsch, A. S.

A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996).
[CrossRef] [PubMed]

A. S. Kewitsch and A. Yariv, "Nonlinear optical properties of photoresists for projection lithography," Appl. Phys. Lett. 68, 455-458 (1996).
[CrossRef]

Kivshar, Y. S.

Kuzyk, M. G.

S. Bian and M. G. Kuzyk, "Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation," Appl. Phys. Lett. 85, 1104-1107 (2004).
[CrossRef]

Leblond, H.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, "Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation," Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

Lee, K. K.

W. L. She, K. K. Lee, and W. K. Lee, "All optical quasi-steady-state photorefractive spatial solitons," Phys. Rev. Lett. 85, 2498-2501 (2000).
[CrossRef] [PubMed]

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

Lee, W. K.

X. S. Wang, W. L. She, and W. K. Lee, "Optical spatial solitons supported by photoisomerization nonlinearity in a polymer," Opt. Lett. 29, 277-279 (2004).
[CrossRef] [PubMed]

W. L. She, K. K. Lee, and W. K. Lee, "All optical quasi-steady-state photorefractive spatial solitons," Phys. Rev. Lett. 85, 2498-2501 (2000).
[CrossRef] [PubMed]

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

Loucif-Saibi, R.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, "Photoisomerization and second harmonic generation in disperse red one-doped and functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

Mager, L.

Markovsky, P.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, "Optically controlled photo-induced birefringence in photo-anisotropic materials," J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Martin, H.

Mateva, N.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, "Optically controlled photo-induced birefringence in photo-anisotropic materials," J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Mitchell, M.

M. Mitchell, M. Segev, and D. N. Christodoulides, "Observation of multihump multimode solitons," Phys. Rev. Lett. 80, 4657-4660 (1998).
[CrossRef]

Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Self-trapping of dark incoherent light beams," Science 280, 889-892 (1998).
[CrossRef] [PubMed]

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

Moerner, W. E.

Monro, T. M.

T. M. Monro, C. Martijn de Sterke, and L. Poladian, "Self-writing a waveguide in glass using photosensitivity," Opt. Commun. 119, 523-526 (1995).
[CrossRef]

Morichere, D.

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

Musslimani, Z. H.

T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, "Rotating optical soliton clusters," Phys. Rev. Lett. 87, 143901 (2001).
[CrossRef] [PubMed]

Nakanishi, M.

Nakatani, K.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, "Photoisomerization and second harmonic generation in disperse red one-doped and functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Natansohn, A.

A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers," Chem. Rev. (Washington, D.C.) 102, 4139-4175 (2002).

Nepomnyashchy, A.

T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, "Rotating optical soliton clusters," Phys. Rev. Lett. 87, 143901 (2001).
[CrossRef] [PubMed]

Nikolova, L.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, "Optically controlled photo-induced birefringence in photo-anisotropic materials," J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Okamoto, N.

Ostroverkhova, O.

Pigier, C.

T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, "Rotating optical soliton clusters," Phys. Rev. Lett. 87, 143901 (2001).
[CrossRef] [PubMed]

Poladian, L.

T. M. Monro, C. Martijn de Sterke, and L. Poladian, "Self-writing a waveguide in glass using photosensitivity," Opt. Commun. 119, 523-526 (1995).
[CrossRef]

Porto, P. D.

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Rochon, P.

A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers," Chem. Rev. (Washington, D.C.) 102, 4139-4175 (2002).

Salamo, G.

M. Shih, M. Segev, and G. Salamo, "Three-dimensional spiraling of interacting spatial solitons," Phys. Rev. Lett. 78, 2551-2554 (1997).
[CrossRef]

Sarkisov, S.

S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G. Adamovsky, "Dark spatial solitons in photopolymer films for optical interconnections," Opt. Eng. (Bellingham) 39, 616-623 (2000).
[CrossRef]

S. Sarkisov, M. Curley, A. Wilkosz, and V. Grymalsky, "Optical channel waveguides formed by upconverted photobleaching of dye-doped polymer film in regime of dark spatial soliton," Opt. Commun. 161, 132-140 (1999).
[CrossRef]

Segev, M.

T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, "Rotating optical soliton clusters," Phys. Rev. Lett. 87, 143901 (2001).
[CrossRef] [PubMed]

G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Self-trapping of dark incoherent light beams," Science 280, 889-892 (1998).
[CrossRef] [PubMed]

M. Mitchell, M. Segev, and D. N. Christodoulides, "Observation of multihump multimode solitons," Phys. Rev. Lett. 80, 4657-4660 (1998).
[CrossRef]

M. Shih, M. Segev, and G. Salamo, "Three-dimensional spiraling of interacting spatial solitons," Phys. Rev. Lett. 78, 2551-2554 (1997).
[CrossRef]

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Sekkat, Z.

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, "Photoisomerization and second harmonic generation in disperse red one-doped and functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

She, W. L.

X. S. Wang and W. L. She, "Spontaneous one- and two-dimensional optical spatial solitons supported by photoisomerization nonlinearity in bulk polymer," Phys. Rev. E 71, 026601 (2005).
[CrossRef]

X. S. Wang, W. L. She, S. Wu, and F. Zeng, "Circularly polarized optical spatial solitons," Opt. Lett. 30, 863-865 (2005).
[CrossRef] [PubMed]

X. S. Wang, W. L. She, and W. K. Lee, "Optical spatial solitons supported by photoisomerization nonlinearity in a polymer," Opt. Lett. 29, 277-279 (2004).
[CrossRef] [PubMed]

W. L. She, K. K. Lee, and W. K. Lee, "All optical quasi-steady-state photorefractive spatial solitons," Phys. Rev. Lett. 85, 2498-2501 (2000).
[CrossRef] [PubMed]

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

Sheldon, M.

Sheu, F.

Shih, M.

Shoji, S.

Singh, S. R.

S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady state conditions," Opt. Lett. 118, 569-576 (1995).

Sonnefraud, Y.

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, "Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation," Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

Stegeman, G. I.

G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

Sugihara, O.

Sukhorukov, A. A.

Tomova, N.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, "Optically controlled photo-induced birefringence in photo-anisotropic materials," J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

Twieg, R. J.

Uzdin, R.

T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, "Rotating optical soliton clusters," Phys. Rev. Lett. 87, 143901 (2001).
[CrossRef] [PubMed]

Valley, G. C.

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Wang, X. S.

Wilkosz, A.

S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G. Adamovsky, "Dark spatial solitons in photopolymer films for optical interconnections," Opt. Eng. (Bellingham) 39, 616-623 (2000).
[CrossRef]

S. Sarkisov, M. Curley, A. Wilkosz, and V. Grymalsky, "Optical channel waveguides formed by upconverted photobleaching of dye-doped polymer film in regime of dark spatial soliton," Opt. Commun. 161, 132-140 (1999).
[CrossRef]

Wu, S.

Xu, J.

Yang, J.

Yariv, A.

A. S. Kewitsch and A. Yariv, "Nonlinear optical properties of photoresists for projection lithography," Appl. Phys. Lett. 68, 455-458 (1996).
[CrossRef]

A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Zeng, F.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Bian and M. G. Kuzyk, "Dark spatial solitons in bulk azo-dye-doped polymer using photoinduced molecular reorientation," Appl. Phys. Lett. 85, 1104-1107 (2004).
[CrossRef]

A. S. Kewitsch and A. Yariv, "Nonlinear optical properties of photoresists for projection lithography," Appl. Phys. Lett. 68, 455-458 (1996).
[CrossRef]

Chem. Mater. (1)

R. Loucif-Saibi, K. Nakatani, J. A. Delaire, M. Dumont, and Z. Sekkat, "Photoisomerization and second harmonic generation in disperse red one-doped and functionalized poly(methyl methacrylate) films," Chem. Mater. 5, 229-236 (1993).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers," Chem. Rev. (Washington, D.C.) 102, 4139-4175 (2002).

J. Appl. Phys. (1)

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. A. Delaire, "Photoisomerization of azobenzene derivatives in polymeric thin films," J. Appl. Phys. 71, 1543-1545 (1992).
[CrossRef]

J. Mod. Opt. (1)

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, "Optically controlled photo-induced birefringence in photo-anisotropic materials," J. Mod. Opt. 35, 1789-1799 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

M. Mitchell and M. Segev, "Self-trapping of incoherent white light," Nature 387, 880-883 (1997).
[CrossRef]

Opt. Commun. (2)

S. Sarkisov, M. Curley, A. Wilkosz, and V. Grymalsky, "Optical channel waveguides formed by upconverted photobleaching of dye-doped polymer film in regime of dark spatial soliton," Opt. Commun. 161, 132-140 (1999).
[CrossRef]

T. M. Monro, C. Martijn de Sterke, and L. Poladian, "Self-writing a waveguide in glass using photosensitivity," Opt. Commun. 119, 523-526 (1995).
[CrossRef]

Opt. Eng. (Bellingham) (1)

S. Sarkisov, M. J. Curley, D. E. Diggs, A. Wilkosz, V. V. Grimalsky, and G. Adamovsky, "Dark spatial solitons in photopolymer films for optical interconnections," Opt. Eng. (Bellingham) 39, 616-623 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (10)

M. Shih and F. Sheu, "Photorefractive polymeric optical solitons," Opt. Lett. 24, 1853-1855 (1999).
[CrossRef]

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, "Self-trapping of light in an organic photorefractive glass," Opt. Lett. 28, 2509-2511 (2003).
[CrossRef] [PubMed]

M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, "Soliton-induced waveguides in an organic photorefractive glass," Opt. Lett. 30, 519-521 (2005).
[CrossRef] [PubMed]

S. Shoji, S. Kawata, A. A. Sukhorukov, and Y. S. Kivshar, "Self-written waveguides in photopolymerizable resins," Opt. Lett. 27, 185-187 (2002).
[CrossRef]

K. Dorkenoo, O. Crégut, L. Mager, F. Gillot, C. Carre, and A. Fort, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
[CrossRef]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, "Steady-state dark photorefractive screening solitons," Opt. Lett. 21, 629-631 (1996).
[CrossRef] [PubMed]

A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996).
[CrossRef] [PubMed]

X. S. Wang, W. L. She, and W. K. Lee, "Optical spatial solitons supported by photoisomerization nonlinearity in a polymer," Opt. Lett. 29, 277-279 (2004).
[CrossRef] [PubMed]

S. R. Singh and D. N. Christodoulides, "Evolution of spatial optical solitons in biased photorefractive media under steady state conditions," Opt. Lett. 118, 569-576 (1995).

X. S. Wang, W. L. She, S. Wu, and F. Zeng, "Circularly polarized optical spatial solitons," Opt. Lett. 30, 863-865 (2005).
[CrossRef] [PubMed]

Phys. Rev. A (1)

G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, "Dark and bright photovoltaic spatial solitons," Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Phys. Rev. E (1)

X. S. Wang and W. L. She, "Spontaneous one- and two-dimensional optical spatial solitons supported by photoisomerization nonlinearity in bulk polymer," Phys. Rev. E 71, 026601 (2005).
[CrossRef]

Phys. Rev. Lett. (8)

W. L. She, K. K. Lee, and W. K. Lee, "All optical quasi-steady-state photorefractive spatial solitons," Phys. Rev. Lett. 85, 2498-2501 (2000).
[CrossRef] [PubMed]

W. L. She, K. K. Lee, and W. K. Lee, "Observation of two-dimensional bright photovoltaic spatial solitons," Phys. Rev. Lett. 83, 3182-3185 (1999).
[CrossRef]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. D. Porto, and A. Yariv, "Steady-state spatial screening solitons in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

M. Shih, M. Segev, and G. Salamo, "Three-dimensional spiraling of interacting spatial solitons," Phys. Rev. Lett. 78, 2551-2554 (1997).
[CrossRef]

T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, "Rotating optical soliton clusters," Phys. Rev. Lett. 87, 143901 (2001).
[CrossRef] [PubMed]

M. Mitchell, M. Segev, and D. N. Christodoulides, "Observation of multihump multimode solitons," Phys. Rev. Lett. 80, 4657-4660 (1998).
[CrossRef]

K. D. Dorkenoo, F. Gillot, O. Cregut, Y. Sonnefraud, A. Fort, and H. Leblond, "Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation," Phys. Rev. Lett. 93, 143905 (2004).
[CrossRef] [PubMed]

Science (2)

G. I. Stegeman and M. Segev, "Optical spatial solitons and their interactions: universality and diversity," Science 286, 1518-1523 (1999).
[CrossRef] [PubMed]

Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N. Christodoulides, "Self-trapping of dark incoherent light beams," Science 280, 889-892 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spatial orientation of the molecule and the directions of the electric fields of the signal and background beams.

Fig. 2
Fig. 2

Δ ( n 2 ) c , Δ ( n 2 ) l , and Δ ( n 2 ) as functions of I.

Fig. 3
Fig. 3

(a) Soliton solutions, where ξ = x x 0 , x 0 = ( 4 k 0 2 π S T 0 ) 1 2 , and (b) the existence curves for β = 1 and α = γ = 3 . ⊥ corresponds to the case of linearly polarized signal and background beams with polarizations perpendicular to each other; l and c correspond, respectively, to linearly and circularly polarized signal beams with an unpolarized background beam.

Fig. 4
Fig. 4

Refractive index pertubation versus intensity of signal beam for α = β = 0.1 and (a) γ = 0.1 , (b) γ = 0.7 , (c) γ = 1 [for this case Δ ( n 2 ) = Δ ( n 2 ) c c = 0 ], (d) γ = 2 , and (e) γ = 4 . ‖, c c , c, l, and ⊥ represent Δ ( n 2 ) , Δ ( n 2 ) c c , Δ ( n 2 ) c , Δ ( n 2 ) l , and Δ ( n 2 ) , respectively.

Fig. 5
Fig. 5

Soliton solutions for (a) γ = 0.7 , different combinations of the polarization of signal and background beams, (b) polarizations of signal and background beams perpendicular, u = 1 (or u 0 = 1 ), α = β = 0.1 , γ = 0.7 and 2.

Fig. 6
Fig. 6

Input (solid curve, soliton solution) and output (dashed curves) intensity profiles of the solitons at (a) low intensity level and (b) high intensity level (b). Inset of (a) shows the existence curve of the soliton. α = β = 0.1 , γ = 0.3 , Ω = 70 cm 1 , and the optical path length in the sample is 20 mm .

Fig. 7
Fig. 7

Evolutions of the solitons in the sample with loss. ξ = x x 0 , x 0 = ( 4 k 0 2 π S T 0 ) 1 2 , η = z z 0 , z 0 = k ( 2 k 0 2 π S T 0 ) , the linear absorption coefficient is Ω = 70 m 1 , and the propagation distance is 20 mm .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

d T l d t = q T s σ T s I s cos 2 θ T + q C s σ C s I s ( T 0 T ) 1 3 q T b σ T b I b T + q C b σ C b I b ( T 0 T ) + K ( T 0 T )
d T c d t = q T s σ T s I s sin 2 θ T 2 + q C s σ C s I s ( T 0 T ) 1 3 q T b σ T b I b T + q C b σ C b I b ( T 0 T ) + K ( T 0 T )
T l = T 0 q C s σ C s I s + q C b σ C b I b + K q T s σ T s I s cos 2 θ + q C s σ C s I s + q T b σ T b I b 3 + q C b σ C b I b + K
T c = T 0 q C s σ C s I s + q C b σ C b I b + K q T s σ T s I s sin 2 θ 2 + q C s σ C s I s + q T b σ T b I b 3 + q C b σ C b I b + K
T = T 0 q C b σ C b I b + K q T b σ T b I b 3 + q C b σ C b I b + K .
T l = T 0 α I + γ β I cos 2 θ + α I + 1 3 + γ ,
T c = T 0 α I + γ β I sin 2 θ 2 + α I + 1 3 + γ .
Δ ( n 2 ) = S ( T T ) cos 2 θ d Ω ,
Δ ( n 2 ) l = 4 π S T 0 [ α I + γ β I ( 1 1 3 + γ + α I β I tan 1 β I 1 3 + γ + α I ) γ 3 ( γ + 1 3 ) ]
Δ ( n 2 ) c = 4 π S T 0 ( α I + γ β I { 1 + α I + 1 3 + γ β I 2 ( α I + 1 3 + γ ) β I + 1 ln 2 ( α I + 1 3 + γ ) β I [ 2 ( α I + 1 3 + γ ) β I + 1 + 1 ] 2 } γ 3 ( γ + 1 3 ) )
T = T 0 q C s σ C I s + q C b σ C b I b + K q T s σ T I s cos 2 θ + q C s σ C I s + q T b σ T b I b cos 2 θ + q C b σ C b I b + K ,
T = T 0 q C s σ C I s + q C b σ C b I b + K q T s σ T I s cos 2 θ + q C s σ C I s + q T b σ T b I b cos 2 Ψ + q C b σ C b I b + K ,
T = T 0 q C b σ C b I b + K q T b σ T b I b cos 2 Ψ + q C b σ C b I b + K .
Δ ( n 2 ) = 4 π S T 0 [ α I + γ β I + 1 ( 1 α I + γ β I + 1 tan 1 1 α I + γ β I + 1 ) γ ( 1 γ tan 1 1 γ ) ] ,
Δ ( n 2 ) = 2 π S T 0 [ α I + γ β I ( 2 θ = 0 π sin θ α I + γ + cos 2 θ ( α I + γ + β I ) + ( 1 β I ) cos 2 θ d ( θ ) ) + γ ( 1 1 + γ γ tan 1 1 γ ) ] .
T c c = T 0 q C s σ C I s + q C b σ C b I b + K q T s σ T I s sin 2 θ 2 + q C s σ C I s + q T b σ T b I b sin 2 θ 2 + q C b σ C b I b + K ,
T = T 0 q C b σ C b I b + K q T b σ T b I b + q C b σ C b I b sin 2 θ 2 + K .
Δ ( n 2 ) c c = 2 π S T 0 { α I + γ β I + 1 [ 2 + 2 α I + γ β I + 1 2 α I + γ β I + 1 + 1 ln 2 α I + γ β I + 1 ( 2 α I + γ β I + 1 + 1 + 1 ) 2 ] γ [ 2 + 2 γ 2 γ + 1 ln 2 γ ( 2 γ + 1 + 1 ) 2 ] } .
2 A + k 0 2 Δ ( n 2 ) A + 2 i k A z = 0 ,
u η = { i [ 2 ξ 2 + Δ ( n 2 ) 4 π S T 0 ] Φ } u ,

Metrics