Abstract

Irradiation of lithium niobate crystals with 41MeV He3 ions causes strong changes of the ordinary and extraordinary refractive indexes. We present a detailed study of this effect. Small fluence of irradiation already yields refractive index changes about 5×104; the highest values reach 3×103. These index modulations are stable up to 100°C and can be erased thermally, for which temperatures up to 500°C are required. A direct correlation between the refractive index changes and the produced lattice vacancies is found.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer Verlag, 2000).
  2. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Guenther, R. M. Macfarlane, and G. T. Sincerbox, "Pixel-matched holographic data storage with megabit pages," Opt. Lett. 22, 1509-1511 (1997).
    [CrossRef]
  3. V. Leyva, G. A. Rakuljic, and B. O'Conner, "Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm," Appl. Phys. Lett. 65, 1079-1081 (1994).
    [CrossRef]
  4. S. Breer, H. Vogt, I. Nee, and K. Buse, "Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate," Electron. Lett. 34, 2419-2421 (1999).
    [CrossRef]
  5. R. C. Alferness, R. V. Schmidt, and E. H. Turner, "Characteristics of Ti-diffused lithium niobate optical directional couplers," Appl. Opt. 18, 4012-4016 (1979).
    [CrossRef] [PubMed]
  6. V. Ramaswamy, M. D. Divino, and R. D. Standley, "Balanced bridge modulator switch using Ti-diffusedLiNbO3 strip waveguides," Appl. Phys. Lett. 32, 644-646 (1978).
    [CrossRef]
  7. C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, "Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating," Opt. Lett. 23, 1194-1196 (1998).
    [CrossRef]
  8. R. V. Schmidt and I. P. Kaminow, "Metal diffused optical waveguides in LiNbO3," Appl. Phys. Lett. 25, 458-460 (1974).
    [CrossRef]
  9. D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
    [CrossRef]
  10. G. L. Destefanis, P. D. Townsend, and J. P. Galliard, "Optical waveguides in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32, 293-294 (1978).
    [CrossRef]
  11. H. Hu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Extraordinary refractive index increase in lithium niobate caused by low-dose ion implantation," Appl. Opt. 40, 3759-3761 (2001).
    [CrossRef]
  12. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
    [CrossRef]
  13. P. J. Chandler and P. D. Townsend, "Detailed analysis of refractive index effects produced by ion implantation," Nucl. Instrum. Methods Phys. Res. B 19/20, 921-926 (1987).
    [CrossRef]
  14. E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
    [CrossRef]
  15. L. Zhang, P. J. Chandler, and P. D. Townsend, "Optical analysis of damage profiles in ion implanted LiNbO3," Nucl. Instrum. Methods Phys. Res. B 59/60, 1147-1152(1991).
    [CrossRef]
  16. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
    [CrossRef]
  17. B. Andreas, K. Peithmann, K. Buse, and K. Maier, "Modification of the refractive index of lithium niobate crystals by transmission of high-energy He2+4 and D+ particles," Appl. Phys. Lett. 84, 3813-3815 (2004).
    [CrossRef]
  18. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).
  19. B. Andreas, I. Breunig, and K. Buse, "Modeling of x-ray induced refractive index changes in poly(methyl methacrylate)," ChemPhysChem 6, 1544-1553 (2005).
    [CrossRef] [PubMed]
  20. K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial frequency refractive index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
    [CrossRef]
  21. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1997).
    [CrossRef]
  22. K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
    [CrossRef]
  23. M. Luennemann, U. Hartwig, and K. Buse, "Improvements of sensitivity and refractive index changes in photorefractive lithium niobate crystals by application of extremely large external electric fields," J. Opt. Soc. Am. B 20, 1643-1648 (2003).
    [CrossRef]
  24. J. J. Amodei and D. L. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
    [CrossRef]
  25. I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999).
    [CrossRef]
  26. D. P. Birnie III, "Analysis of diffusion in lithium niobate," J. Mater. Sci. 28, 302-315 (1993).
    [CrossRef]
  27. R. S. Weis and T. K. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys. A 37, 191-203 (1985).
    [CrossRef]
  28. M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
    [CrossRef]
  29. K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
    [CrossRef]

2006 (1)

K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
[CrossRef]

2005 (2)

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

B. Andreas, I. Breunig, and K. Buse, "Modeling of x-ray induced refractive index changes in poly(methyl methacrylate)," ChemPhysChem 6, 1544-1553 (2005).
[CrossRef] [PubMed]

2004 (1)

B. Andreas, K. Peithmann, K. Buse, and K. Maier, "Modification of the refractive index of lithium niobate crystals by transmission of high-energy He2+4 and D+ particles," Appl. Phys. Lett. 84, 3813-3815 (2004).
[CrossRef]

2003 (1)

2002 (1)

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
[CrossRef]

2001 (2)

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

H. Hu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Extraordinary refractive index increase in lithium niobate caused by low-dose ion implantation," Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

2000 (1)

1999 (3)

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

S. Breer, H. Vogt, I. Nee, and K. Buse, "Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate," Electron. Lett. 34, 2419-2421 (1999).
[CrossRef]

I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999).
[CrossRef]

1998 (2)

1997 (2)

1994 (1)

V. Leyva, G. A. Rakuljic, and B. O'Conner, "Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm," Appl. Phys. Lett. 65, 1079-1081 (1994).
[CrossRef]

1993 (1)

D. P. Birnie III, "Analysis of diffusion in lithium niobate," J. Mater. Sci. 28, 302-315 (1993).
[CrossRef]

1991 (1)

L. Zhang, P. J. Chandler, and P. D. Townsend, "Optical analysis of damage profiles in ion implanted LiNbO3," Nucl. Instrum. Methods Phys. Res. B 59/60, 1147-1152(1991).
[CrossRef]

1988 (1)

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

1987 (1)

P. J. Chandler and P. D. Townsend, "Detailed analysis of refractive index effects produced by ion implantation," Nucl. Instrum. Methods Phys. Res. B 19/20, 921-926 (1987).
[CrossRef]

1985 (1)

R. S. Weis and T. K. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

1979 (1)

1978 (2)

G. L. Destefanis, P. D. Townsend, and J. P. Galliard, "Optical waveguides in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32, 293-294 (1978).
[CrossRef]

V. Ramaswamy, M. D. Divino, and R. D. Standley, "Balanced bridge modulator switch using Ti-diffusedLiNbO3 strip waveguides," Appl. Phys. Lett. 32, 644-646 (1978).
[CrossRef]

1974 (1)

R. V. Schmidt and I. P. Kaminow, "Metal diffused optical waveguides in LiNbO3," Appl. Phys. Lett. 25, 458-460 (1974).
[CrossRef]

1971 (1)

J. J. Amodei and D. L. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Agulló-López, F.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Alferness, R. C.

Amodei, J. J.

J. J. Amodei and D. L. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Andreas, B.

K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
[CrossRef]

B. Andreas, I. Breunig, and K. Buse, "Modeling of x-ray induced refractive index changes in poly(methyl methacrylate)," ChemPhysChem 6, 1544-1553 (2005).
[CrossRef] [PubMed]

B. Andreas, K. Peithmann, K. Buse, and K. Maier, "Modification of the refractive index of lithium niobate crystals by transmission of high-energy He2+4 and D+ particles," Appl. Phys. Lett. 84, 3813-3815 (2004).
[CrossRef]

Becker, C.

Bernal, M.-P.

Biersack, J. P.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Birnie, D. P.

D. P. Birnie III, "Analysis of diffusion in lithium niobate," J. Mater. Sci. 28, 302-315 (1993).
[CrossRef]

Breer, S.

S. Breer, H. Vogt, I. Nee, and K. Buse, "Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate," Electron. Lett. 34, 2419-2421 (1999).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Breunig, I.

B. Andreas, I. Breunig, and K. Buse, "Modeling of x-ray induced refractive index changes in poly(methyl methacrylate)," ChemPhysChem 6, 1544-1553 (2005).
[CrossRef] [PubMed]

Burr, G. W.

Buse, K.

K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
[CrossRef]

B. Andreas, I. Breunig, and K. Buse, "Modeling of x-ray induced refractive index changes in poly(methyl methacrylate)," ChemPhysChem 6, 1544-1553 (2005).
[CrossRef] [PubMed]

B. Andreas, K. Peithmann, K. Buse, and K. Maier, "Modification of the refractive index of lithium niobate crystals by transmission of high-energy He2+4 and D+ particles," Appl. Phys. Lett. 84, 3813-3815 (2004).
[CrossRef]

M. Luennemann, U. Hartwig, and K. Buse, "Improvements of sensitivity and refractive index changes in photorefractive lithium niobate crystals by application of extremely large external electric fields," J. Opt. Soc. Am. B 20, 1643-1648 (2003).
[CrossRef]

K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial frequency refractive index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
[CrossRef]

S. Breer, H. Vogt, I. Nee, and K. Buse, "Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate," Electron. Lett. 34, 2419-2421 (1999).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Caballero, O.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Chandler, P. J.

L. Zhang, P. J. Chandler, and P. D. Townsend, "Optical analysis of damage profiles in ion implanted LiNbO3," Nucl. Instrum. Methods Phys. Res. B 59/60, 1147-1152(1991).
[CrossRef]

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

P. J. Chandler and P. D. Townsend, "Detailed analysis of refractive index effects produced by ion implantation," Nucl. Instrum. Methods Phys. Res. B 19/20, 921-926 (1987).
[CrossRef]

Chen, F.

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

H. Hu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Extraordinary refractive index increase in lithium niobate caused by low-dose ion implantation," Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

Coufal, H.

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer Verlag, 2000).

Destefanis, G. L.

G. L. Destefanis, P. D. Townsend, and J. P. Galliard, "Optical waveguides in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32, 293-294 (1978).
[CrossRef]

Divino, M. D.

V. Ramaswamy, M. D. Divino, and R. D. Standley, "Balanced bridge modulator switch using Ti-diffusedLiNbO3 strip waveguides," Appl. Phys. Lett. 32, 644-646 (1978).
[CrossRef]

Fally, M.

I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999).
[CrossRef]

Galliard, J. P.

G. L. Destefanis, P. D. Townsend, and J. P. Galliard, "Optical waveguides in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32, 293-294 (1978).
[CrossRef]

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

García, G.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Cabañes, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

García-Navarro, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

Glavas, E.

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

Greiner, A.

Grygier, R. K.

Guenther, H.

Haaks, M.

K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
[CrossRef]

Hartwig, U.

Havermeyer, F.

I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999).
[CrossRef]

Hoffnagle, J. A.

Hu, H.

H. Hu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Extraordinary refractive index increase in lithium niobate caused by low-dose ion implantation," Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Jazbinsek, M.

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
[CrossRef]

Jefferson, C. M.

Kaminow, I. P.

R. V. Schmidt and I. P. Kaminow, "Metal diffused optical waveguides in LiNbO3," Appl. Phys. Lett. 25, 458-460 (1974).
[CrossRef]

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Kip, D.

D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

Krätzig, E.

K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial frequency refractive index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Leyva, V.

V. Leyva, G. A. Rakuljic, and B. O'Conner, "Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm," Appl. Phys. Lett. 65, 1079-1081 (1994).
[CrossRef]

Littmark, U.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Lu, F.

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Luennemann, M.

Macfarlane, R. M.

Maier, K.

K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
[CrossRef]

B. Andreas, K. Peithmann, K. Buse, and K. Maier, "Modification of the refractive index of lithium niobate crystals by transmission of high-energy He2+4 and D+ particles," Appl. Phys. Lett. 84, 3813-3815 (2004).
[CrossRef]

May, R. P.

I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999).
[CrossRef]

Modrow, H.

K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
[CrossRef]

Nee, I.

S. Breer, H. Vogt, I. Nee, and K. Buse, "Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate," Electron. Lett. 34, 2419-2421 (1999).
[CrossRef]

I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999).
[CrossRef]

O'Conner, B.

V. Leyva, G. A. Rakuljic, and B. O'Conner, "Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm," Appl. Phys. Lett. 65, 1079-1081 (1994).
[CrossRef]

Oesselke, T.

Olivares, J.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

Pape, A.

Peithmann, K.

K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
[CrossRef]

B. Andreas, K. Peithmann, K. Buse, and K. Maier, "Modification of the refractive index of lithium niobate crystals by transmission of high-energy He2+4 and D+ particles," Appl. Phys. Lett. 84, 3813-3815 (2004).
[CrossRef]

K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial frequency refractive index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Psaltis, D.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer Verlag, 2000).

Rakuljic, G. A.

V. Leyva, G. A. Rakuljic, and B. O'Conner, "Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm," Appl. Phys. Lett. 65, 1079-1081 (1994).
[CrossRef]

Ramaswamy, V.

V. Ramaswamy, M. D. Divino, and R. D. Standley, "Balanced bridge modulator switch using Ti-diffusedLiNbO3 strip waveguides," Appl. Phys. Lett. 32, 644-646 (1978).
[CrossRef]

Rupp, R. A.

I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999).
[CrossRef]

Schmidt, R. V.

Shelby, R. M.

Shen, D.-Y.

H. Hu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Extraordinary refractive index increase in lithium niobate caused by low-dose ion implantation," Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Shi, B.-R.

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

H. Hu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Extraordinary refractive index increase in lithium niobate caused by low-dose ion implantation," Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

Sincerbox, G. T.

Sohler, W.

Staebler, D. L.

J. J. Amodei and D. L. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

Standley, R. D.

V. Ramaswamy, M. D. Divino, and R. D. Standley, "Balanced bridge modulator switch using Ti-diffusedLiNbO3 strip waveguides," Appl. Phys. Lett. 32, 644-646 (1978).
[CrossRef]

Suche, H.

Townsend, P. D.

L. Zhang, P. J. Chandler, and P. D. Townsend, "Optical analysis of damage profiles in ion implanted LiNbO3," Nucl. Instrum. Methods Phys. Res. B 59/60, 1147-1152(1991).
[CrossRef]

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

P. J. Chandler and P. D. Townsend, "Detailed analysis of refractive index effects produced by ion implantation," Nucl. Instrum. Methods Phys. Res. B 19/20, 921-926 (1987).
[CrossRef]

G. L. Destefanis, P. D. Townsend, and J. P. Galliard, "Optical waveguides in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32, 293-294 (1978).
[CrossRef]

Turner, E. H.

Vogt, H.

S. Breer, H. Vogt, I. Nee, and K. Buse, "Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate," Electron. Lett. 34, 2419-2421 (1999).
[CrossRef]

Wang, K.-M.

H. Hu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Extraordinary refractive index increase in lithium niobate caused by low-dose ion implantation," Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

Wiebrock, A.

K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial frequency refractive index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

Zamani-Meymian, M.-R.

K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
[CrossRef]

Zgonik, M.

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
[CrossRef]

Zhang, L.

L. Zhang, P. J. Chandler, and P. D. Townsend, "Optical analysis of damage profiles in ion implanted LiNbO3," Nucl. Instrum. Methods Phys. Res. B 59/60, 1147-1152(1991).
[CrossRef]

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

Appl. Opt. (2)

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys. A 37, 191-203 (1985).
[CrossRef]

Appl. Phys. B (4)

M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002).
[CrossRef]

K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006).
[CrossRef]

D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999).
[CrossRef]

Appl. Phys. Lett. (7)

J. J. Amodei and D. L. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005).
[CrossRef]

B. Andreas, K. Peithmann, K. Buse, and K. Maier, "Modification of the refractive index of lithium niobate crystals by transmission of high-energy He2+4 and D+ particles," Appl. Phys. Lett. 84, 3813-3815 (2004).
[CrossRef]

V. Ramaswamy, M. D. Divino, and R. D. Standley, "Balanced bridge modulator switch using Ti-diffusedLiNbO3 strip waveguides," Appl. Phys. Lett. 32, 644-646 (1978).
[CrossRef]

G. L. Destefanis, P. D. Townsend, and J. P. Galliard, "Optical waveguides in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32, 293-294 (1978).
[CrossRef]

V. Leyva, G. A. Rakuljic, and B. O'Conner, "Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm," Appl. Phys. Lett. 65, 1079-1081 (1994).
[CrossRef]

R. V. Schmidt and I. P. Kaminow, "Metal diffused optical waveguides in LiNbO3," Appl. Phys. Lett. 25, 458-460 (1974).
[CrossRef]

ChemPhysChem (1)

B. Andreas, I. Breunig, and K. Buse, "Modeling of x-ray induced refractive index changes in poly(methyl methacrylate)," ChemPhysChem 6, 1544-1553 (2005).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. Breer, H. Vogt, I. Nee, and K. Buse, "Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate," Electron. Lett. 34, 2419-2421 (1999).
[CrossRef]

J. Appl. Phys. (1)

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001).
[CrossRef]

J. Mater. Sci. (1)

D. P. Birnie III, "Analysis of diffusion in lithium niobate," J. Mater. Sci. 28, 302-315 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nucl. Instrum. Methods Phys. Res. B (3)

P. J. Chandler and P. D. Townsend, "Detailed analysis of refractive index effects produced by ion implantation," Nucl. Instrum. Methods Phys. Res. B 19/20, 921-926 (1987).
[CrossRef]

E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988).
[CrossRef]

L. Zhang, P. J. Chandler, and P. D. Townsend, "Optical analysis of damage profiles in ion implanted LiNbO3," Nucl. Instrum. Methods Phys. Res. B 59/60, 1147-1152(1991).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1997).
[CrossRef]

Other (2)

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic drawing of the exposure setup at the cyclotron of the Helmholtz Institute, University of Bonn. Low-mass He 3 ions at 41 MeV energy are utilized; the crystal is protected against thermal damage by cooling water.

Fig. 2
Fig. 2

Refractive index changes for ordinary ( Δ n o ) and extraordinary ( Δ n e ) light polarization versus total ion fluence as a semilogarithmic plot. The different symbols represent three sets of measurements.

Fig. 3
Fig. 3

Refractive index changes for ordinary ( Δ n o ) and extraordinary ( Δ n e ) light polarization versus total irradiation current at fixed total fluence.

Fig. 4
Fig. 4

Values of Δ n e and Δ n o versus annealing temperature for annealing steps of 25 ° C for 15 min each.

Fig. 5
Fig. 5

Values of Δ n e (top) and Δ n o (bottom) versus crystal depth as a 2D plot. The ion exposure took place from the top direction. The black color indicates regions where the effects could not be resolved owing to resolution limits of our interferometer. Lines A and B show special regions of interest along which Δ n is further analyzed.

Fig. 6
Fig. 6

Traces of Δ n versus crystal depth with respect to the ion direction. The solid curves show measured data for Δ n o and Δ n e ; the dashed curves indicate the density of vacancies per ion and angstrom c vac ( d ) calculated using SRIM-2003, multiplied by an arbitrary factor, and the dotted curve shows the particle energy loss per angstrom Δ E ( d ) . Part (a) shows the data at position A at maximum refractive index changes; part (b) presents the data at position, where smaller changes were present, but the stop depth can be resolved.

Metrics