Abstract

A thorough investigation of optical losses for the 1064nm emission in Nd3+-doped lead lanthanum zirconate titanate (PLZT) transparent ceramics is presented. Thermal lens experiments were carried out to evaluate thermo-optical properties and the fluorescence quantum efficiency of the emitting level F324. Excited-state absorption losses were measured in the emitting wavelength region, and the Auger upconversion energy transfer parameter γ was calculated. By using γ, the pump-intensity dependence of the optical gain at 1064nm, the fluorescence quantum efficiency, and the generation of heat in the ceramic were simulated for a high 803nm pump-power regime. Since the radiative and nonradiative losses in Nd:PLZT were verified to be considerably lower than in various commercial laser crystals and glasses, it is suggested that this material might become an interesting alternative for high-power laser emission.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic lasers: ready for action," Photonics Spectra 38, 1-8 (2004).
  2. V. Lupei, A. Lupei, and A. Ikesue, "Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials," Appl. Phys. Lett. 86, 111118 (2005).
    [Crossref]
  3. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
    [Crossref]
  4. V. Lupei, "Efficiency enhancement and power scaling of Nd lasers," Opt. Mater. 24, 353-368 (2003), and references therein.
    [Crossref]
  5. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
    [Crossref]
  6. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
    [Crossref]
  7. D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, "Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping," Opt. Express 13, 6212-6216 (2005).
    [Crossref] [PubMed]
  8. S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
    [Crossref]
  9. C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. Myers, and M. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005), and references therein.
    [Crossref] [PubMed]
  10. V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, "Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals," J. Opt. Soc. Am. B 15, 1052-1060 (1998).
    [Crossref]
  11. A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, "Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission," Appl. Phys. Lett. 86, 152905 (2005).
    [Crossref]
  12. S. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, "Auger upconversion losses in Nd-doped laser glasses," Opt. Commun. 111, 263-268 (1994).
    [Crossref]
  13. J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, "Excited-state absorption and up-conversion losses in Nd-doped glasses for high-power lasers," Phys. Rev. B 62, 4459 (2000), and references therein.
    [Crossref]
  14. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998).
    [Crossref]
  15. L. Palatella, F. Cornacchia, A. Toncelli, and M. Tonelli, "Microscopic treatment of upconversion in Nd3+-doped samples," J. Opt. Soc. Am. B 20, 1708-1714 (2003).
    [Crossref]
  16. I. Iparraguirre, R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, "Infrared-to-visible upconversion in K5Nd(MoO4)4 stoichiometric laser crystal," J. Opt. Soc. Am. B 19, 2911-2920 (2002).
    [Crossref]
  17. A. S. S. de Camargo, L. A. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, "Structural and spectroscopic properties of rare-earth (Nd3+,Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics," J. Appl. Phys. 95, 2135-2140 (2004).
    [Crossref]
  18. G. H. Haertling, "Ferroelectric ceramics: history and technology," J. Am. Ceram. Soc. 82, 797-818 (1999).
    [Crossref]
  19. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein.
    [Crossref]
  20. M. L. Baesso, J. Shen, and R. Snook, "Mode-mismatched thermal lens determination of temperature-coefficient of optical-path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
    [Crossref]
  21. S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
    [Crossref]
  22. C. Jacinto, T. Catunda, D. Jaque, and J. García-Solé, "Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4," Phys. Rev. B 72, 235111 (2005).
    [Crossref]
  23. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006).
    [Crossref]
  24. T. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," Ann. Phys. (N.Y.) 2, 55-75 (1948).
    [Crossref]
  25. D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
    [Crossref]
  26. A. I. Burshtein, "Hoping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).
  27. R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
    [Crossref]
  28. M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
    [Crossref]
  29. I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999).
    [Crossref]
  30. C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
    [Crossref]
  31. J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross-sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
    [Crossref]
  32. J. H. Campbell and T. I. Suratwala, "Nd-doped phosphate glasses for high-energy/high-peak-power lasers," J. Non-Cryst. Solids 263, 318-341 (2000).
    [Crossref]
  33. S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
    [Crossref]
  34. A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials," Rev. Sci. Instrum. 74, 877-880 (2003).
    [Crossref]
  35. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
    [Crossref]
  36. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
    [Crossref]
  37. W. F. Krupke, "Radiative transition probabilities within the 4f2 ground configuration of Nd:YAG," IEEE J. Quantum Electron. QE-7, 153-159 (1971).
    [Crossref]
  38. V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
    [Crossref]
  39. V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
    [Crossref]
  40. W. Köechner, Solid-State Laser Engineering (Springer-Verlag, 1988).
  41. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
    [Crossref]

2006 (1)

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006).
[Crossref]

2005 (7)

C. Jacinto, T. Catunda, D. Jaque, and J. García-Solé, "Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4," Phys. Rev. B 72, 235111 (2005).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[Crossref]

V. Lupei, A. Lupei, and A. Ikesue, "Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials," Appl. Phys. Lett. 86, 111118 (2005).
[Crossref]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[Crossref]

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, "Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping," Opt. Express 13, 6212-6216 (2005).
[Crossref] [PubMed]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. Myers, and M. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005), and references therein.
[Crossref] [PubMed]

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, "Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission," Appl. Phys. Lett. 86, 152905 (2005).
[Crossref]

2004 (4)

A. S. S. de Camargo, L. A. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, "Structural and spectroscopic properties of rare-earth (Nd3+,Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics," J. Appl. Phys. 95, 2135-2140 (2004).
[Crossref]

S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
[Crossref]

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic lasers: ready for action," Photonics Spectra 38, 1-8 (2004).

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

2003 (3)

A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials," Rev. Sci. Instrum. 74, 877-880 (2003).
[Crossref]

V. Lupei, "Efficiency enhancement and power scaling of Nd lasers," Opt. Mater. 24, 353-368 (2003), and references therein.
[Crossref]

L. Palatella, F. Cornacchia, A. Toncelli, and M. Tonelli, "Microscopic treatment of upconversion in Nd3+-doped samples," J. Opt. Soc. Am. B 20, 1708-1714 (2003).
[Crossref]

2002 (3)

I. Iparraguirre, R. Balda, M. Voda, M. Al-Saleh, and J. Fernandez, "Infrared-to-visible upconversion in K5Nd(MoO4)4 stoichiometric laser crystal," J. Opt. Soc. Am. B 19, 2911-2920 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[Crossref]

2001 (3)

S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
[Crossref]

V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
[Crossref]

2000 (3)

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein.
[Crossref]

J. H. Campbell and T. I. Suratwala, "Nd-doped phosphate glasses for high-energy/high-peak-power lasers," J. Non-Cryst. Solids 263, 318-341 (2000).
[Crossref]

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, "Excited-state absorption and up-conversion losses in Nd-doped glasses for high-power lasers," Phys. Rev. B 62, 4459 (2000), and references therein.
[Crossref]

1999 (2)

G. H. Haertling, "Ferroelectric ceramics: history and technology," J. Am. Ceram. Soc. 82, 797-818 (1999).
[Crossref]

I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999).
[Crossref]

1998 (2)

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998).
[Crossref]

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, "Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals," J. Opt. Soc. Am. B 15, 1052-1060 (1998).
[Crossref]

1995 (2)

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross-sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[Crossref]

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

1994 (2)

M. L. Baesso, J. Shen, and R. Snook, "Mode-mismatched thermal lens determination of temperature-coefficient of optical-path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[Crossref]

S. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, "Auger upconversion losses in Nd-doped laser glasses," Opt. Commun. 111, 263-268 (1994).
[Crossref]

1972 (1)

A. I. Burshtein, "Hoping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).

1971 (1)

W. F. Krupke, "Radiative transition probabilities within the 4f2 ground configuration of Nd:YAG," IEEE J. Quantum Electron. QE-7, 153-159 (1971).
[Crossref]

1967 (1)

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[Crossref]

1962 (2)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[Crossref]

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[Crossref]

1953 (1)

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[Crossref]

1948 (1)

T. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," Ann. Phys. (N.Y.) 2, 55-75 (1948).
[Crossref]

Al-Saleh, M.

Andrade, A. A.

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. Myers, and M. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005), and references therein.
[Crossref] [PubMed]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[Crossref]

A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials," Rev. Sci. Instrum. 74, 877-880 (2003).
[Crossref]

Baesso, M. L.

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[Crossref]

A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials," Rev. Sci. Instrum. 74, 877-880 (2003).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein.
[Crossref]

M. L. Baesso, J. Shen, and R. Snook, "Mode-mismatched thermal lens determination of temperature-coefficient of optical-path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[Crossref]

Balda, R.

Bento, A. C.

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein.
[Crossref]

Bisson, J.-F.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

Bodnar, I.

A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials," Rev. Sci. Instrum. 74, 877-880 (2003).
[Crossref]

Bon, M.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

Bonner, C. L.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998).
[Crossref]

Botero, E. R.

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, "Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission," Appl. Phys. Lett. 86, 152905 (2005).
[Crossref]

Burshtein, A. I.

A. I. Burshtein, "Hoping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).

Byer, R. L.

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic lasers: ready for action," Photonics Spectra 38, 1-8 (2004).

Campbell, J. H.

J. H. Campbell and T. I. Suratwala, "Nd-doped phosphate glasses for high-energy/high-peak-power lasers," J. Non-Cryst. Solids 263, 318-341 (2000).
[Crossref]

Catunda, T.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, and J. García-Solé, "Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4," Phys. Rev. B 72, 235111 (2005).
[Crossref]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. Myers, and M. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005), and references therein.
[Crossref] [PubMed]

A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials," Rev. Sci. Instrum. 74, 877-880 (2003).
[Crossref]

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein.
[Crossref]

Cornacchia, F.

de Camargo, A. S. S.

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, "Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission," Appl. Phys. Lett. 86, 152905 (2005).
[Crossref]

A. S. S. de Camargo, L. A. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, "Structural and spectroscopic properties of rare-earth (Nd3+,Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics," J. Appl. Phys. 95, 2135-2140 (2004).
[Crossref]

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
[Crossref]

Descamps, D.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, "Excited-state absorption and up-conversion losses in Nd-doped glasses for high-power lasers," Phys. Rev. B 62, 4459 (2000), and references therein.
[Crossref]

Descroix, E.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

Dexter, D. L.

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[Crossref]

Digonnet, M.

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic lasers: ready for action," Photonics Spectra 38, 1-8 (2004).

Doualan, J. L.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, "Excited-state absorption and up-conversion losses in Nd-doped glasses for high-power lasers," Phys. Rev. B 62, 4459 (2000), and references therein.
[Crossref]

Ehrt, D.

S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
[Crossref]

Eiras, J. A.

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, "Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission," Appl. Phys. Lett. 86, 152905 (2005).
[Crossref]

A. S. S. de Camargo, L. A. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, "Structural and spectroscopic properties of rare-earth (Nd3+,Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics," J. Appl. Phys. 95, 2135-2140 (2004).
[Crossref]

Fallnich, C.

Feng, Y.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

Fernandez, J.

Ferrand, B.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998).
[Crossref]

Förster, T.

T. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," Ann. Phys. (N.Y.) 2, 55-75 (1948).
[Crossref]

Frede, M.

Garcia, D.

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, "Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission," Appl. Phys. Lett. 86, 152905 (2005).
[Crossref]

A. S. S. de Camargo, L. A. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, "Structural and spectroscopic properties of rare-earth (Nd3+,Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics," J. Appl. Phys. 95, 2135-2140 (2004).
[Crossref]

García-Solé, J.

C. Jacinto, T. Catunda, D. Jaque, and J. García-Solé, "Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4," Phys. Rev. B 72, 235111 (2005).
[Crossref]

Garnier, N.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

Guy, S.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998).
[Crossref]

Guyot, Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

Haertling, G. H.

G. H. Haertling, "Ferroelectric ceramics: history and technology," J. Am. Ceram. Soc. 82, 797-818 (1999).
[Crossref]

Hanna, D. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998).
[Crossref]

Hein, J.

S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
[Crossref]

Hewak, D. W.

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
[Crossref]

Huber, G.

Ikesue, A.

V. Lupei, A. Lupei, and A. Ikesue, "Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials," Appl. Phys. Lett. 86, 111118 (2005).
[Crossref]

V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[Crossref]

Iparraguirre, I.

Jacinto, C.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006).
[Crossref]

C. Jacinto, T. Catunda, D. Jaque, and J. García-Solé, "Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4," Phys. Rev. B 72, 235111 (2005).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[Crossref]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. Myers, and M. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005), and references therein.
[Crossref] [PubMed]

Jaque, D.

C. Jacinto, T. Catunda, D. Jaque, and J. García-Solé, "Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4," Phys. Rev. B 72, 235111 (2005).
[Crossref]

I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999).
[Crossref]

Jensen, T.

Judd, B. R.

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[Crossref]

Kaminskii, A. A.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

Köechner, W.

W. Köechner, Solid-State Laser Engineering (Springer-Verlag, 1988).

Koetke, J.

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross-sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[Crossref]

Kong, J.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[Crossref]

Kracht, D.

Krupke, W. F.

S. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, "Auger upconversion losses in Nd-doped laser glasses," Opt. Commun. 111, 263-268 (1994).
[Crossref]

W. F. Krupke, "Radiative transition probabilities within the 4f2 ground configuration of Nd:YAG," IEEE J. Quantum Electron. QE-7, 153-159 (1971).
[Crossref]

Landais, J.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, "Excited-state absorption and up-conversion losses in Nd-doped glasses for high-power lasers," Phys. Rev. B 62, 4459 (2000), and references therein.
[Crossref]

Laporte, P.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

Lavin, V.

I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999).
[Crossref]

Lima, S. M.

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[Crossref]

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein.
[Crossref]

Lu, J.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

Lupei, A.

V. Lupei, A. Lupei, and A. Ikesue, "Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials," Appl. Phys. Lett. 86, 111118 (2005).
[Crossref]

V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[Crossref]

Lupei, V.

V. Lupei, A. Lupei, and A. Ikesue, "Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials," Appl. Phys. Lett. 86, 111118 (2005).
[Crossref]

V. Lupei, "Efficiency enhancement and power scaling of Nd lasers," Opt. Mater. 24, 353-368 (2003), and references therein.
[Crossref]

V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
[Crossref]

Manaa, H.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

Martin, I. R.

I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999).
[Crossref]

Maunier, C.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, "Excited-state absorption and up-conversion losses in Nd-doped glasses for high-power lasers," Phys. Rev. B 62, 4459 (2000), and references therein.
[Crossref]

Meyn, J.-P.

Miranda, C. M.

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein.
[Crossref]

Moncorgé, R.

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, "Excited-state absorption and up-conversion losses in Nd-doped glasses for high-power lasers," Phys. Rev. B 62, 4459 (2000), and references therein.
[Crossref]

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

Montoya, E.

I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999).
[Crossref]

Mura, J.

A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials," Rev. Sci. Instrum. 74, 877-880 (2003).
[Crossref]

Musha, M.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

Myers, J.

Myers, J. D.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006).
[Crossref]

Myers, M.

Myers, M. J.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006).
[Crossref]

Noginov, M. A.

Nunes, L. A. O.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006).
[Crossref]

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, "Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission," Appl. Phys. Lett. 86, 152905 (2005).
[Crossref]

A. S. S. de Camargo, L. A. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, "Structural and spectroscopic properties of rare-earth (Nd3+,Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics," J. Appl. Phys. 95, 2135-2140 (2004).
[Crossref]

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[Crossref]

Oliveira, S. L.

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006).
[Crossref]

C. Jacinto, S. L. Oliveira, T. Catunda, A. A. Andrade, J. Myers, and M. Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005), and references therein.
[Crossref] [PubMed]

Ostroumov, V.

Palatella, L.

Paoloni, S.

S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
[Crossref]

Pavel, N.

V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
[Crossref]

Payne, S.

S. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, "Auger upconversion losses in Nd-doped laser glasses," Opt. Commun. 111, 263-268 (1994).
[Crossref]

Powell, R. C.

R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
[Crossref]

Rivoire, J. Y.

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

Rodriguez, V. D.

I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999).
[Crossref]

Rodríguez-Mendoza, U. R.

I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999).
[Crossref]

Sampaio, J. A.

S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein.
[Crossref]

Santos, I. A.

A. S. S. de Camargo, L. A. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, "Structural and spectroscopic properties of rare-earth (Nd3+,Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics," J. Appl. Phys. 95, 2135-2140 (2004).
[Crossref]

Sauerbrey, R.

S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
[Crossref]

Shen, J.

M. L. Baesso, J. Shen, and R. Snook, "Mode-mismatched thermal lens determination of temperature-coefficient of optical-path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[Crossref]

Shepherd, D. P.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998).
[Crossref]

Shirakawa, A.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

Shoji, L.

V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[Crossref]

Smith, L. K.

S. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, "Auger upconversion losses in Nd-doped laser glasses," Opt. Commun. 111, 263-268 (1994).
[Crossref]

Snook, R.

M. L. Baesso, J. Shen, and R. Snook, "Mode-mismatched thermal lens determination of temperature-coefficient of optical-path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[Crossref]

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, "Nd-doped phosphate glasses for high-energy/high-peak-power lasers," J. Non-Cryst. Solids 263, 318-341 (2000).
[Crossref]

Taira, T.

V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, "Laser emission in highly doped Nd:YAG crystals under F5/24 and F3/24 pumping," Opt. Lett. 26, 1678-1680 (2001).
[Crossref]

Takaichi, K.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

Tang, D. Y.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[Crossref]

Tanimoto, O.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[Crossref]

Toncelli, A.

Tonelli, M.

Töpfer, T.

S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
[Crossref]

Tropper, A. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998).
[Crossref]

Ueda, K.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

Ueda, K.-l.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

Uematsu, T.

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

Voda, M.

Walther, H. G.

S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
[Crossref]

Wilhelm, R.

Wilke, G. D.

S. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, "Auger upconversion losses in Nd-doped laser glasses," Opt. Commun. 111, 263-268 (1994).
[Crossref]

Wintzer, W.

S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
[Crossref]

Wisdom, J.

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic lasers: ready for action," Photonics Spectra 38, 1-8 (2004).

Yagi, H.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

Yanagitani, T.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

Yokota, M.

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[Crossref]

Zhao, B.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[Crossref]

Ann. Phys. (N.Y.) (1)

T. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," Ann. Phys. (N.Y.) 2, 55-75 (1948).
[Crossref]

Appl. Phys. B (3)

J. Koetke and G. Huber, "Infrared excited-state absorption and stimulated-emission cross-sections of Er3+-doped crystals," Appl. Phys. B 61, 151-158 (1995).
[Crossref]

J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-l. Ueda, T. Yanagitani, and A. A. Kaminskii, "110W ceramic Nd3+:Y3Al5O12 laser," Appl. Phys. B B79, 25-28 (2004).
[Crossref]

S. Paoloni, J. Hein, T. Töpfer, H. G. Walther, R. Sauerbrey, D. Ehrt, and W. Wintzer, "Laser beam induced optical aberrations in phosphate and fluoride phosphate glasses," Appl. Phys. B 78, 415-419 (2004), and references therein.
[Crossref]

Appl. Phys. Lett. (7)

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, "9.2-W diode-end-pumped Yb:Y2O3 ceramic laser," Appl. Phys. Lett. 86, 161116 (2005).
[Crossref]

V. Lupei, A. Lupei, and A. Ikesue, "Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials," Appl. Phys. Lett. 86, 111118 (2005).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic," Appl. Phys. Lett. 81, 4324-4326 (2002).
[Crossref]

A. S. S. de Camargo, E. R. Botero, D. Garcia, J. A. Eiras, and L. A. O. Nunes, "Nd3+-doped lead lanthanum zirconate titanate transparent ferroelectric ceramic as a laser material: Energy transfer and stimulated emission," Appl. Phys. Lett. 86, 152905 (2005).
[Crossref]

C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, "Thermal lens spectroscopy of Nd:YAG," Appl. Phys. Lett. 86, 034104 (2005).
[Crossref]

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, "Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses," Appl. Phys. Lett. 81, 589-591 (2002).
[Crossref]

V. Lupei, A. Lupei, N. Pavel, T. Taira, L. Shoji, and A. Ikesue, "Laser emission under resonat pump in the emitting level of concentrated Nd:YAG ceramics," Appl. Phys. Lett. 79, 590-592 (2001).
[Crossref]

IEEE J. Quantum Electron. (2)

W. F. Krupke, "Radiative transition probabilities within the 4f2 ground configuration of Nd:YAG," IEEE J. Quantum Electron. QE-7, 153-159 (1971).
[Crossref]

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, "High-inversion densities in Nd:YAG: Upconversion and bleaching," IEEE J. Quantum Electron. 34, 900-909 (1998).
[Crossref]

J. Am. Ceram. Soc. (1)

G. H. Haertling, "Ferroelectric ceramics: history and technology," J. Am. Ceram. Soc. 82, 797-818 (1999).
[Crossref]

J. Appl. Phys. (2)

A. S. S. de Camargo, L. A. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, "Structural and spectroscopic properties of rare-earth (Nd3+,Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics," J. Appl. Phys. 95, 2135-2140 (2004).
[Crossref]

M. L. Baesso, J. Shen, and R. Snook, "Mode-mismatched thermal lens determination of temperature-coefficient of optical-path length in soda lime glass at different wavelengths," J. Appl. Phys. 75, 3732-3737 (1994).
[Crossref]

J. Chem. Phys. (3)

G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37, 511-520 (1962).
[Crossref]

I. R. Martin, V. D. Rodriguez, U. R. Rodríguez-Mendoza, V. Lavin, E. Montoya, and D. Jaque, "Energy transfer with migration. Generalization of the Yokota-Tanimoto model for any kind of multipole interaction," J. Chem. Phys. 111, 1191-1194 (1999).
[Crossref]

D. L. Dexter, "A theory of sensitized luminescence in solids," J. Chem. Phys. 21, 836-850 (1953).
[Crossref]

J. Non-Cryst. Solids (3)

J. H. Campbell and T. I. Suratwala, "Nd-doped phosphate glasses for high-energy/high-peak-power lasers," J. Non-Cryst. Solids 263, 318-341 (2000).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. S. S. de Camargo, L. A. O. Nunes, M. L. Baesso, and D. W. Hewak, "Spectroscopy, thermal and optical properties of Nd3+-doped chalcogenide glasses," J. Non-Cryst. Solids 284, 274-281 (2001).
[Crossref]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, "Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review," J. Non-Cryst. Solids 273, 215-227 (2000), and references therein.
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Soc. Jpn. (1)

M. Yokota and O. Tanimoto, "Effects of diffusion on energy transfer by resonance," J. Phys. Soc. Jpn. 22, 779-784 (1967).
[Crossref]

Opt. Commun. (1)

S. Payne, G. D. Wilke, L. K. Smith, and W. F. Krupke, "Auger upconversion losses in Nd-doped laser glasses," Opt. Commun. 111, 263-268 (1994).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

V. Lupei, "Efficiency enhancement and power scaling of Nd lasers," Opt. Mater. 24, 353-368 (2003), and references therein.
[Crossref]

Photonics Spectra (1)

J. Wisdom, M. Digonnet, and R. L. Byer, "Ceramic lasers: ready for action," Photonics Spectra 38, 1-8 (2004).

Phys. Rev. (1)

B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127, 750-761 (1962).
[Crossref]

Phys. Rev. B (4)

C. Jacinto, T. Catunda, D. Jaque, and J. García-Solé, "Fluorescence quantum efficiency and Auger upconversion losses of the stoichiometric laser crystal NdAl3(BO3)4," Phys. Rev. B 72, 235111 (2005).
[Crossref]

C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, "Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: application to Nd3+-doped glasses," Phys. Rev. B 73, 125107 (2006).
[Crossref]

J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, "Excited-state absorption and up-conversion losses in Nd-doped glasses for high-power lasers," Phys. Rev. B 62, 4459 (2000), and references therein.
[Crossref]

Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, "Excited-state-absorption and up-conversion studies of Nd3+-doped-single crystals Y3Al5O12,YLiF4, and LaMgAl11O19," Phys. Rev. B 51, 784-799 (1995).
[Crossref]

Rev. Sci. Instrum. (1)

A. A. Andrade, T. Catunda, I. Bodnar, J. Mura, and M. L. Baesso, "Thermal lens determination of the temperature coefficient of optical path length in optical materials," Rev. Sci. Instrum. 74, 877-880 (2003).
[Crossref]

Sov. Phys. JETP (1)

A. I. Burshtein, "Hoping mechanism of energy transfer," Sov. Phys. JETP 35, 882-885 (1972).

Other (2)

R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
[Crossref]

W. Köechner, Solid-State Laser Engineering (Springer-Verlag, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the mode-mismatched thermal lens experimental apparatus. M, mirrors; P, photodetectors; L, convergent lenses. The angle between the excitation and the probe beams is indicated by α. (b) Scheme of the geometric position of the excitation and probe beams.

Fig. 2
Fig. 2

Partial energy level diagram of Nd 3 + ions indicating the excitation transition and energy transfer processes involving the emitting level F 3 2 4 . The microscopic energy transfer parameters C d d (for energy migration) and C d a 1 UP and C d a 2 UP (for AU) are also indicated.

Fig. 3
Fig. 3

(a) TL transient signal from Nd : PLZT ( 1.0 wt . % Nd 2 O 3 ) transparent ceramic sample to P i n = 10 mW and λ exc = 803 nm . The solid line corresponds to adjust using the TL equation [Eq. (1)], from which we obtain θ and t c . (b) Probe beam phase shift ( θ ) as a function of the pump power ( λ exe = 803 nm ) in Nd : PLZT ( 1.0 wt . % Nd 2 O 3 ) sample. The dashed line is the linear fit, and the solid line is the simulation using the TL equation, including the AU processes.

Fig. 4
Fig. 4

Experimental values of Θ as a function of the excitation beam wavelength, λ exc for the Nd : PLZT ( 1.0 wt . % Nd 2 O 3 ) transparent ceramic. The linear fit was done using Eq. (3). The inset presents the GSA spectrum of the same sample.

Fig. 5
Fig. 5

Thermal lens line shape ( θ P ) of the Nd : PLZT ( 1.0 wt . % Nd 2 O 3 ) transparent ceramic as a function of excitation wavelength. The line represents the product A L eff , which is proportional to the absorption spectrum.

Fig. 6
Fig. 6

Gain-ESA ( σ SE σ ESA ) spectrum (solid curve) in comparison to stimulated emission (open dotted curve) and ESA (dashed curve) spectra of the Nd : PLZT ( 1.0 wt . % Nd 2 O 3 ) transparent ceramic. The gain-ESA spectrum was calibrated at the σ GSA region around 880 nm .

Fig. 7
Fig. 7

(a) Simulations of AU energy transfer parameter γ, and (b) optical gain coefficient [ G ( λ ) ] at 1064 nm , as a function of the saturation parameter ( S = I I s ) , in Nd : PLZT ( 1.0 wt . % Nd 2 O 3 ) transparent ceramic. The gain curves were simulated for both conditions, when upconversion is present (open dots) and when it is absent (closed dots).

Fig. 8
Fig. 8

Normalized fluorescence quantum efficiency ( η η 0 ) and thermal load ( φ ) in the presence of AU, as a function of the pump intensity ( λ exc = 803 nm ) , for Nd : PLZT ( 1.0 wt . % Nd 2 O 3 ) transparent ceramic.

Tables (2)

Tables Icon

Table 1 Parameters Determined by the Thermal Lens Technique a

Tables Icon

Table 2 Experimentally Determined and Calculated Spectroscopic Parameters for the Nd : PLZT ( 1.0 wt . % Nd 2 O 3 ) Transparent Ceramic Sample

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I ( 0 ) ( 1 θ 2 tan 1 { 2 m V [ ( 1 + 2 m ) 2 + V 2 ] t c 2 t + 1 + 2 m + V 2 } ) 2 ,
θ = P exc A L eff K λ p d s d T φ ,
Θ = C 1 η λ exc λ em 1 ,
d N e d t = σ I h v exc N g N e τ γ N e 2 ,
γ FD UP = 2 ( 4 3 ) 2 π 3 C d a UP f e N t ,
γ mig YT = 2 × 0.676 ( 8 π 2 3 ) [ 2 C d a UP C d d 3 ] 1 4 N t ( 1 f e ) .
γ mig B = 2 π ( 2 π 3 ) 5 2 C d d C d a UP N t ( 1 f e ) .
C d a , i UP = 3 c 8 π 4 n 2 σ SE ( λ i ) σ ESA ( λ i ) d λ i ,
C d d = 3 c 8 π 4 n 2 σ SE ( λ ) σ GSA ( λ ) d λ ,
σ SE ( λ ) = β λ 5 8 π n 2 c τ rad I ( λ ) λ I ( λ ) d λ ,
I u = I 0 exp [ σ GSA N t L ] ,
I p = I 0 exp [ σ GSA ( N t N e ) L + i N i ( σ SE , i σ ESA , i ) L ] ,
ln ( I p I u ) = σ GSA N e L + i N i ( σ SE , i σ ESA , i ) L .
ln ( I p I u ) = ln [ 1 + ( I p I u I u ) ] = ln ( 1 + Δ I I u ) Δ I I .
Δ I I = N e B L [ σ GSA + i ( N i N e ) ( σ SE , i σ ESA , i ) ] ,
n e = ( 1 + S ) + ( 1 + S 2 ) + 4 γ τ N t S 2 γ τ N t .
γ = [ 0.938 + 22.103 f e ] N t × 10 38 cm 3 s ,
η AU ( S ) = η 0 1 + γ ( S ) τ N t n e ( S ) ,

Metrics