Abstract

Photopolymer materials are practical materials for use as holographic recording media, as they are inexpensive and self-processing (dry processed). Understanding the photochemical mechanisms present during recording in these materials is crucial to enable further development. One such mechanism is the existence of an inhibition period at the start of grating growth during which the formation of polymer chains is suppressed. Some previous studies have indicated possible explanations for this effect and approximate models have been proposed to explain the observed behavior. We examine in detail the kinetic behavior involved within the photopolymer material during recording to obtain a clearer picture of the photochemical processes present. Experiments are reported and carried out with the specific aim of understanding these processes. The results support our description of the inhibition process in an acrylamide-based photopolymer and can be used to predict behavior under certain conditions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Photopolymer holographic recording material," Optik (Stuttgart) 112, 449-463 (2001).
    [CrossRef]
  2. G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
    [CrossRef]
  3. J. T. Sheridan and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1108-1114 (2000).
    [CrossRef]
  4. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Adjusted intensity nonlocal diffusion model of photopolymer grating formation," J. Opt. Soc. Am. A 19, 621-624 (2002).
    [CrossRef]
  5. J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions," J. Opt. Soc. Am. B 22, 407-416 (2005).
    [CrossRef]
  6. S. Wu and E. N. Glytsis, "Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis," J. Opt. Soc. Am. B 20, 1177-1188 (2003).
    [CrossRef]
  7. M. R. Gleeson, J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Recording beam modulation during grating formation," Appl. Opt. 44, 1-8 (2005).
    [CrossRef]
  8. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Appl. Phys. B 77, 639-662 (2003).
    [CrossRef]
  9. S. Gallego, M. Ortuno, C. Neipp, and J. T. Sheridan, "3-dimensional analysis of holographic photopolymers based memories," Opt. Express 13, 3543-3557 (2005).
    [CrossRef] [PubMed]
  10. International Union of Pure and Applied Chemistry, Compendium of Chemical Terminology, 2nd ed. (Blackwell Scientific, 1997).
  11. J. B. Birk, Organic Molecular Photophysics (Wiley, 1975), Vol. 2.
  12. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, "Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures," J. Opt. A 96, 951-965 (2004).
  13. A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry (Blackwell Scientific, 1991).
  14. A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, "Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials," http://e-lc.org/Documents/TigranlowbarVlowbarGalstianlowbar2004lowbar05lowbar05lowbar11lowbar13lowbar17.pdf.
  15. S. Piazzolla and B. Jenkins, "Dynamics during holographic exposure in photopolymers for single and multiplexed gratings," J. Mod. Opt. 46, 2079-2110 (1999).
  16. D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry," Pure Appl. Opt. 1, 251-268 (1992).
    [CrossRef]
  17. D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect," Pure Appl. Opt. 1, 269-279 (1992).
    [CrossRef]
  18. N. Noiret, C. Meyer, and D. J. Lougnot, "Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity," Pure Appl. Opt. 3, 55-71 (1994).
    [CrossRef]
  19. G. Odian, Principles of Polymerization (Wiley, 1991).
  20. W. J. Tomlinson, "Organic photochemical refractive-index systems," in Advances in Photochemistry (Wiley, 1980).
    [CrossRef]
  21. J. H. Kwon, H. C. Chang, and K. C. Woo, "Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers," J. Opt. Soc. Am. B 16, 1651-1657 (1999).
    [CrossRef]
  22. C. Carre, D. J. Lougnot, and J. P. Fouassier, "Holography as a tool for mechanistic and kinetic studies of photo-polymerisation reactions: a theoretical and experimental approach," Macromolecules 22, 791-799 (1989).
    [CrossRef]
  23. R. K. Kostuk, "Dynamic hologram recording characteristics in DuPont photopolymers," Appl. Opt. 38, 1357-1363 (1999).
    [CrossRef]
  24. R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).
  25. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, 1980).
    [PubMed]
  26. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).
  27. H. Kogelnik, "Coupled wave theory for thick holographic gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  28. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Automated recording and testing of holographic optical element arrays," Optik (Stuttgart) 111, 459-467 (2000).
  29. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model," Opt. Express 13, 6990-7004 (2005).
    [CrossRef] [PubMed]
  30. I. Aubrecht, M. Miller, and I. Koudela, "Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth," J. Mod. Opt. 45, 1465-1477 (1998).
    [CrossRef]
  31. C. E. Close, M. R. Gleeson, F. T. O'Neill, J. V. Kelly, and J. T. Sheridan, "Control and measurement of the physical properties in acrylamide based photopolymer materials," Proc. SPIE 5827, 346-357 (2005).
    [CrossRef]
  32. F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, "Refractive elements produced in photopolymer layers," J. Mater. Sci. 40, 4129-4132 (2005).
    [CrossRef]
  33. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Thickness variation of self-processing acrylamide based photopolymer and reflection holography," Opt. Eng. 40, 533-539 (2001).
    [CrossRef]
  34. K. Sukegawa, S. Sugawara, and K. Murase, "Holographic recording by Fe3+-sensitized photopolymerization," Electron. Commun. Jpn. 58C, 132-138 (1975).
  35. S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, E. Fernandez, and I. Pascual, "3-dimensional characterization of thick grating formation in PVA/AA based photopolymer," Opt. Express 14, 5121-5128 (2006).
    [CrossRef] [PubMed]
  36. H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences Series (Springer, 2000).
  37. J. T. Sheridan, M. R. Gleeson, J. V. Kelly, and F. T. O'Neill, "Nonlocal polymerization-driven diffusion-model-based examination of the scaling law for holographic data storage," Opt. Lett. 30, 239-241 (2005).
    [CrossRef] [PubMed]
  38. S. Orlic, E. Dietz, S. Frohmann, Ch. Müller, and H. J. Eichler, "High density multilayer recording of microgratings for optical data storage," Proc. SPIE 5521, 149-160 (2004).
  39. H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
    [CrossRef]
  40. H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, and R. Völkel, "Holographic optical beamsplitters in dichromated gelatin," J. Mod. Opt. 39, 881-887 (1992).
    [CrossRef]
  41. J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, "Diffractive beam splitter for laser Doppler velocimetry," Opt. Lett. 17, 1240-1242 (1992).
    [CrossRef] [PubMed]

2006 (1)

2005 (7)

2004 (2)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, "Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures," J. Opt. A 96, 951-965 (2004).

S. Orlic, E. Dietz, S. Frohmann, Ch. Müller, and H. J. Eichler, "High density multilayer recording of microgratings for optical data storage," Proc. SPIE 5521, 149-160 (2004).

2003 (2)

S. Wu and E. N. Glytsis, "Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis," J. Opt. Soc. Am. B 20, 1177-1188 (2003).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

2002 (1)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Adjusted intensity nonlocal diffusion model of photopolymer grating formation," J. Opt. Soc. Am. A 19, 621-624 (2002).
[CrossRef]

2001 (2)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Photopolymer holographic recording material," Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Thickness variation of self-processing acrylamide based photopolymer and reflection holography," Opt. Eng. 40, 533-539 (2001).
[CrossRef]

2000 (2)

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Automated recording and testing of holographic optical element arrays," Optik (Stuttgart) 111, 459-467 (2000).

J. T. Sheridan and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

1999 (3)

1998 (1)

I. Aubrecht, M. Miller, and I. Koudela, "Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth," J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

1994 (2)

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

N. Noiret, C. Meyer, and D. J. Lougnot, "Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity," Pure Appl. Opt. 3, 55-71 (1994).
[CrossRef]

1993 (1)

H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
[CrossRef]

1992 (4)

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, and R. Völkel, "Holographic optical beamsplitters in dichromated gelatin," J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, "Diffractive beam splitter for laser Doppler velocimetry," Opt. Lett. 17, 1240-1242 (1992).
[CrossRef] [PubMed]

D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry," Pure Appl. Opt. 1, 251-268 (1992).
[CrossRef]

D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect," Pure Appl. Opt. 1, 269-279 (1992).
[CrossRef]

1989 (1)

C. Carre, D. J. Lougnot, and J. P. Fouassier, "Holography as a tool for mechanistic and kinetic studies of photo-polymerisation reactions: a theoretical and experimental approach," Macromolecules 22, 791-799 (1989).
[CrossRef]

1975 (1)

K. Sukegawa, S. Sugawara, and K. Murase, "Holographic recording by Fe3+-sensitized photopolymerization," Electron. Commun. Jpn. 58C, 132-138 (1975).

1969 (1)

H. Kogelnik, "Coupled wave theory for thick holographic gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Acebal, P.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Aubrecht, I.

I. Aubrecht, M. Miller, and I. Koudela, "Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth," J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

Baggott, J.

A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry (Blackwell Scientific, 1991).

Belendez, A.

Birk, J. B.

J. B. Birk, Organic Molecular Photophysics (Wiley, 1975), Vol. 2.

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, 1980).
[PubMed]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, "Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures," J. Opt. A 96, 951-965 (2004).

Carr, A. J.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, "Refractive elements produced in photopolymer layers," J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

Carre, C.

C. Carre, D. J. Lougnot, and J. P. Fouassier, "Holography as a tool for mechanistic and kinetic studies of photo-polymerisation reactions: a theoretical and experimental approach," Macromolecules 22, 791-799 (1989).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Chang, H. C.

Close, C. E.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model," Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

C. E. Close, M. R. Gleeson, F. T. O'Neill, J. V. Kelly, and J. T. Sheridan, "Control and measurement of the physical properties in acrylamide based photopolymer materials," Proc. SPIE 5827, 346-357 (2005).
[CrossRef]

Daniels, S. M.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, "Refractive elements produced in photopolymer layers," J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

Dietz, E.

S. Orlic, E. Dietz, S. Frohmann, Ch. Müller, and H. J. Eichler, "High density multilayer recording of microgratings for optical data storage," Proc. SPIE 5521, 149-160 (2004).

Durst, F.

Eichler, H. J.

S. Orlic, E. Dietz, S. Frohmann, Ch. Müller, and H. J. Eichler, "High density multilayer recording of microgratings for optical data storage," Proc. SPIE 5521, 149-160 (2004).

Fernandez, E.

Fimia, A.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Fouassier, J. P.

C. Carre, D. J. Lougnot, and J. P. Fouassier, "Holography as a tool for mechanistic and kinetic studies of photo-polymerisation reactions: a theoretical and experimental approach," Macromolecules 22, 791-799 (1989).
[CrossRef]

Frohmann, S.

S. Orlic, E. Dietz, S. Frohmann, Ch. Müller, and H. J. Eichler, "High density multilayer recording of microgratings for optical data storage," Proc. SPIE 5521, 149-160 (2004).

Gallego, S.

Galstian, T.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, "Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials," http://e-lc.org/Documents/TigranlowbarVlowbarGalstianlowbar2004lowbar05lowbar05lowbar11lowbar13lowbar17.pdf.

Galstyan, A. V.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, "Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials," http://e-lc.org/Documents/TigranlowbarVlowbarGalstianlowbar2004lowbar05lowbar05lowbar11lowbar13lowbar17.pdf.

Gilbert, A.

A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry (Blackwell Scientific, 1991).

Gleeson, M. R.

M. R. Gleeson, J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Recording beam modulation during grating formation," Appl. Opt. 44, 1-8 (2005).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, "Refractive elements produced in photopolymer layers," J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

C. E. Close, M. R. Gleeson, F. T. O'Neill, J. V. Kelly, and J. T. Sheridan, "Control and measurement of the physical properties in acrylamide based photopolymer materials," Proc. SPIE 5827, 346-357 (2005).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, J. V. Kelly, and F. T. O'Neill, "Nonlocal polymerization-driven diffusion-model-based examination of the scaling law for holographic data storage," Opt. Lett. 30, 239-241 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model," Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

Gluch, E.

H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
[CrossRef]

Glytsis, E. N.

Hakobyan, R. S.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, "Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials," http://e-lc.org/Documents/TigranlowbarVlowbarGalstianlowbar2004lowbar05lowbar05lowbar11lowbar13lowbar17.pdf.

Harbour, S.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, "Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials," http://e-lc.org/Documents/TigranlowbarVlowbarGalstianlowbar2004lowbar05lowbar05lowbar11lowbar13lowbar17.pdf.

Hecht, E.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).

Jenkins, B.

S. Piazzolla and B. Jenkins, "Dynamics during holographic exposure in photopolymers for single and multiplexed gratings," J. Mod. Opt. 46, 2079-2110 (1999).

Kelly, J. V.

M. R. Gleeson, J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Recording beam modulation during grating formation," Appl. Opt. 44, 1-8 (2005).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, "Refractive elements produced in photopolymer layers," J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

C. E. Close, M. R. Gleeson, F. T. O'Neill, J. V. Kelly, and J. T. Sheridan, "Control and measurement of the physical properties in acrylamide based photopolymer materials," Proc. SPIE 5827, 346-357 (2005).
[CrossRef]

J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions," J. Opt. Soc. Am. B 22, 407-416 (2005).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, J. V. Kelly, and F. T. O'Neill, "Nonlocal polymerization-driven diffusion-model-based examination of the scaling law for holographic data storage," Opt. Lett. 30, 239-241 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model," Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

Kobolla, H.

H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
[CrossRef]

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, and R. Völkel, "Holographic optical beamsplitters in dichromated gelatin," J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick holographic gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Kostuk, R. K.

Koudela, I.

I. Aubrecht, M. Miller, and I. Koudela, "Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth," J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

Kwon, J. H.

Lawrence, J. R.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, "Refractive elements produced in photopolymer layers," J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Adjusted intensity nonlocal diffusion model of photopolymer grating formation," J. Opt. Soc. Am. A 19, 621-624 (2002).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Photopolymer holographic recording material," Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Thickness variation of self-processing acrylamide based photopolymer and reflection holography," Opt. Eng. 40, 533-539 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Automated recording and testing of holographic optical element arrays," Optik (Stuttgart) 111, 459-467 (2000).

J. T. Sheridan and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

Lougnot, D. J.

N. Noiret, C. Meyer, and D. J. Lougnot, "Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity," Pure Appl. Opt. 3, 55-71 (1994).
[CrossRef]

D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry," Pure Appl. Opt. 1, 251-268 (1992).
[CrossRef]

D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect," Pure Appl. Opt. 1, 269-279 (1992).
[CrossRef]

C. Carre, D. J. Lougnot, and J. P. Fouassier, "Holography as a tool for mechanistic and kinetic studies of photo-polymerisation reactions: a theoretical and experimental approach," Macromolecules 22, 791-799 (1989).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Marquez, A.

Meyer, C.

N. Noiret, C. Meyer, and D. J. Lougnot, "Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity," Pure Appl. Opt. 3, 55-71 (1994).
[CrossRef]

Miller, M.

I. Aubrecht, M. Miller, and I. Koudela, "Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth," J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

Mouroulis, P.

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Müller, Ch.

S. Orlic, E. Dietz, S. Frohmann, Ch. Müller, and H. J. Eichler, "High density multilayer recording of microgratings for optical data storage," Proc. SPIE 5521, 149-160 (2004).

Murase, K.

K. Sukegawa, S. Sugawara, and K. Murase, "Holographic recording by Fe3+-sensitized photopolymerization," Electron. Commun. Jpn. 58C, 132-138 (1975).

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, "Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures," J. Opt. A 96, 951-965 (2004).

Neipp, C.

Noiret, N.

N. Noiret, C. Meyer, and D. J. Lougnot, "Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity," Pure Appl. Opt. 3, 55-71 (1994).
[CrossRef]

Odian, G.

G. Odian, Principles of Polymerization (Wiley, 1991).

O'Neill, F. T.

C. E. Close, M. R. Gleeson, F. T. O'Neill, J. V. Kelly, and J. T. Sheridan, "Control and measurement of the physical properties in acrylamide based photopolymer materials," Proc. SPIE 5827, 346-357 (2005).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, "Refractive elements produced in photopolymer layers," J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

M. R. Gleeson, J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Recording beam modulation during grating formation," Appl. Opt. 44, 1-8 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model," Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

J. T. Sheridan, M. R. Gleeson, J. V. Kelly, and F. T. O'Neill, "Nonlocal polymerization-driven diffusion-model-based examination of the scaling law for holographic data storage," Opt. Lett. 30, 239-241 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions," J. Opt. Soc. Am. B 22, 407-416 (2005).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Adjusted intensity nonlocal diffusion model of photopolymer grating formation," J. Opt. Soc. Am. A 19, 621-624 (2002).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Photopolymer holographic recording material," Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Thickness variation of self-processing acrylamide based photopolymer and reflection holography," Opt. Eng. 40, 533-539 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Automated recording and testing of holographic optical element arrays," Optik (Stuttgart) 111, 459-467 (2000).

Orlic, S.

S. Orlic, E. Dietz, S. Frohmann, Ch. Müller, and H. J. Eichler, "High density multilayer recording of microgratings for optical data storage," Proc. SPIE 5521, 149-160 (2004).

Ortuno, M.

Pascual, I.

Piazzolla, S.

S. Piazzolla and B. Jenkins, "Dynamics during holographic exposure in photopolymers for single and multiplexed gratings," J. Mod. Opt. 46, 2079-2110 (1999).

Schmidt, J.

H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
[CrossRef]

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, and R. Völkel, "Holographic optical beamsplitters in dichromated gelatin," J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, "Diffractive beam splitter for laser Doppler velocimetry," Opt. Lett. 17, 1240-1242 (1992).
[CrossRef] [PubMed]

Schwider, J.

H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
[CrossRef]

J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, "Diffractive beam splitter for laser Doppler velocimetry," Opt. Lett. 17, 1240-1242 (1992).
[CrossRef] [PubMed]

Sheridan, J. T.

J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions," J. Opt. Soc. Am. B 22, 407-416 (2005).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, J. V. Kelly, and F. T. O'Neill, "Nonlocal polymerization-driven diffusion-model-based examination of the scaling law for holographic data storage," Opt. Lett. 30, 239-241 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymer driven diffusion model," Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuno, C. Neipp, and J. T. Sheridan, "3-dimensional analysis of holographic photopolymers based memories," Opt. Express 13, 3543-3557 (2005).
[CrossRef] [PubMed]

M. R. Gleeson, J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Recording beam modulation during grating formation," Appl. Opt. 44, 1-8 (2005).
[CrossRef]

C. E. Close, M. R. Gleeson, F. T. O'Neill, J. V. Kelly, and J. T. Sheridan, "Control and measurement of the physical properties in acrylamide based photopolymer materials," Proc. SPIE 5827, 346-357 (2005).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, "Refractive elements produced in photopolymer layers," J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Adjusted intensity nonlocal diffusion model of photopolymer grating formation," J. Opt. Soc. Am. A 19, 621-624 (2002).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Photopolymer holographic recording material," Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Thickness variation of self-processing acrylamide based photopolymer and reflection holography," Opt. Eng. 40, 533-539 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Automated recording and testing of holographic optical element arrays," Optik (Stuttgart) 111, 459-467 (2000).

J. T. Sheridan and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
[CrossRef]

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, and R. Völkel, "Holographic optical beamsplitters in dichromated gelatin," J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, "Diffractive beam splitter for laser Doppler velocimetry," Opt. Lett. 17, 1240-1242 (1992).
[CrossRef] [PubMed]

Stork, W.

Streibl, N.

H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
[CrossRef]

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, and R. Völkel, "Holographic optical beamsplitters in dichromated gelatin," J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, "Diffractive beam splitter for laser Doppler velocimetry," Opt. Lett. 17, 1240-1242 (1992).
[CrossRef] [PubMed]

Sugawara, S.

K. Sukegawa, S. Sugawara, and K. Murase, "Holographic recording by Fe3+-sensitized photopolymerization," Electron. Commun. Jpn. 58C, 132-138 (1975).

Sukegawa, K.

K. Sukegawa, S. Sugawara, and K. Murase, "Holographic recording by Fe3+-sensitized photopolymerization," Electron. Commun. Jpn. 58C, 132-138 (1975).

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, "Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures," J. Opt. A 96, 951-965 (2004).

Syms, R. R. A.

R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).

Tomlinson, W. J.

W. J. Tomlinson, "Organic photochemical refractive-index systems," in Advances in Photochemistry (Wiley, 1980).
[CrossRef]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, "Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures," J. Opt. A 96, 951-965 (2004).

Turck, C.

D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect," Pure Appl. Opt. 1, 269-279 (1992).
[CrossRef]

D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry," Pure Appl. Opt. 1, 251-268 (1992).
[CrossRef]

Ulibarrena, M.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Völkel, R.

H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
[CrossRef]

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, and R. Völkel, "Holographic optical beamsplitters in dichromated gelatin," J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, "Diffractive beam splitter for laser Doppler velocimetry," Opt. Lett. 17, 1240-1242 (1992).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, 1980).
[PubMed]

Woo, K. C.

Wu, S.

Zhao, G.

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Appl. Opt. (2)

M. R. Gleeson, J. V. Kelly, F. T. O'Neill, and J. T. Sheridan, "Recording beam modulation during grating formation," Appl. Opt. 44, 1-8 (2005).
[CrossRef]

R. K. Kostuk, "Dynamic hologram recording characteristics in DuPont photopolymers," Appl. Opt. 38, 1357-1363 (1999).
[CrossRef]

Appl. Phys. B (1)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, "Photopolymerization model for holographic gratings formation in photopolymers," Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled wave theory for thick holographic gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Electron. Commun. Jpn. (1)

K. Sukegawa, S. Sugawara, and K. Murase, "Holographic recording by Fe3+-sensitized photopolymerization," Electron. Commun. Jpn. 58C, 132-138 (1975).

J. Mater. Sci. (1)

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, "Refractive elements produced in photopolymer layers," J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

J. Mod. Opt. (5)

I. Aubrecht, M. Miller, and I. Koudela, "Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth," J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

H. Kobolla, J. T. Sheridan, E. Gluch, J. Schmidt, R. Völkel, J. Schwider, and N. Streibl, "Holographic 2-D mixed polarisation deflection elements," J. Mod. Opt. 40, 613-624 (1993).
[CrossRef]

H. Kobolla, J. Schmidt, J. T. Sheridan, N. Streibl, and R. Völkel, "Holographic optical beamsplitters in dichromated gelatin," J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

S. Piazzolla and B. Jenkins, "Dynamics during holographic exposure in photopolymers for single and multiplexed gratings," J. Mod. Opt. 46, 2079-2110 (1999).

J. Opt. A (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, "Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures," J. Opt. A 96, 951-965 (2004).

J. Opt. Soc. Am. A (2)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Adjusted intensity nonlocal diffusion model of photopolymer grating formation," J. Opt. Soc. Am. A 19, 621-624 (2002).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Macromolecules (1)

C. Carre, D. J. Lougnot, and J. P. Fouassier, "Holography as a tool for mechanistic and kinetic studies of photo-polymerisation reactions: a theoretical and experimental approach," Macromolecules 22, 791-799 (1989).
[CrossRef]

Opt. Eng. (1)

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Thickness variation of self-processing acrylamide based photopolymer and reflection holography," Opt. Eng. 40, 533-539 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Optik (Stuttgart) (2)

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Automated recording and testing of holographic optical element arrays," Optik (Stuttgart) 111, 459-467 (2000).

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Photopolymer holographic recording material," Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

Proc. SPIE (2)

C. E. Close, M. R. Gleeson, F. T. O'Neill, J. V. Kelly, and J. T. Sheridan, "Control and measurement of the physical properties in acrylamide based photopolymer materials," Proc. SPIE 5827, 346-357 (2005).
[CrossRef]

S. Orlic, E. Dietz, S. Frohmann, Ch. Müller, and H. J. Eichler, "High density multilayer recording of microgratings for optical data storage," Proc. SPIE 5521, 149-160 (2004).

Pure Appl. Opt. (3)

D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: II. Self-developing materials for real-time interferometry," Pure Appl. Opt. 1, 251-268 (1992).
[CrossRef]

D. J. Lougnot and C. Turck, "Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect," Pure Appl. Opt. 1, 269-279 (1992).
[CrossRef]

N. Noiret, C. Meyer, and D. J. Lougnot, "Photopolymers for holographic recording: V. Self-processing systems with near infrared sensitivity," Pure Appl. Opt. 3, 55-71 (1994).
[CrossRef]

Other (10)

G. Odian, Principles of Polymerization (Wiley, 1991).

W. J. Tomlinson, "Organic photochemical refractive-index systems," in Advances in Photochemistry (Wiley, 1980).
[CrossRef]

A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry (Blackwell Scientific, 1991).

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, "Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials," http://e-lc.org/Documents/TigranlowbarVlowbarGalstianlowbar2004lowbar05lowbar05lowbar11lowbar13lowbar17.pdf.

International Union of Pure and Applied Chemistry, Compendium of Chemical Terminology, 2nd ed. (Blackwell Scientific, 1997).

J. B. Birk, Organic Molecular Photophysics (Wiley, 1975), Vol. 2.

R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, 1980).
[PubMed]

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).

H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences Series (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

First three Fourier harmonics of monomer concentration versus ξ, R = 1 .

Fig. 2
Fig. 2

N 1 , first harmonic of polymer concentration versus ξ for R = 1 and R = 10 . These values were chosen as being similar to the extracted experimental results.

Fig. 3
Fig. 3

Refractive index amplitude growth curves, showing the changes in the rate of polymerization for three different exposure intensities: theoretical fit (solid curves) and experimental data (dotted curves).

Fig. 4
Fig. 4

Growth curves with varying preexposure times of 3, 2, and 1 s : theoretical fit (solid curves) and experimental data (dotted curves). There are changes in the inhibition periods and the rates of polymerization.

Fig. 5
Fig. 5

Fit to the experimentally obtained growth curve of refractive index amplitude versus exposure time for (a) cover-plated material layer preexposed for 1 s and (b) uncover-plated material layer without preexposure: theoretical fit (solid curves) and experimental data (dotted curves).

Tables (3)

Tables Icon

Table 1 Extracted Physical Parameters Obtained from Fits to the Data a

Tables Icon

Table 2 Physical Parameter Values Obtained from Fits to the Data in Fig. 4

Tables Icon

Table 3 Values Obtained from Fits to the Data Sets in Fig. 5

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

I k d R ,
R d = d [ R ] d t = k d [ I ] ,
R + M k i M 1 ,
M n + M k p M n + 1 ,
dye + h ν dye * ,
dye * + M R .
dye * k f dye + h ν ,
dye * k i s c dye T ,
dye T + C I k R dye + C I + H + .
dye * + ρ k ρ Y + ρ ,
R ρ = d [ Y ] d t = k ρ [ dye * ] [ ρ ] ,
R r = f k d [ I ] R ρ ,
R i = d [ M 1 ] d t = k i [ R ] [ M ] ,
d [ R ] d t = R r R i = ( f k d [ I ] R ρ ) k i [ R ] [ M ] = 0 .
R i = k i [ R ] [ M ] = f k d [ I ] R ρ .
M n + M m k t c M n + m ,
M n + M m k t d M n + M m .
R t = k t [ M ] 2 ,
f k d [ I ] R ρ = k t [ M ] 2 .
[ M ] stat = ( f k d [ I ] R ρ k t ) 1 2 ,
R p d [ M ] d t = k p [ M ] [ M ] .
R p = k ρ ( f k d [ I ] R ρ k t ) 1 2 [ M ] .
R i = f ( Φ R ρ ) I a = Φ I a R ρ ,
I a ( x , t ) = I ( x ) { 1 exp [ ϵ Z ( t ) d ] } = I ( x ) [ 1 T ( t ) ] ,
[ M ] = { f ( Φ R ρ ) I ( x ) [ 1 T ( t ) ] k t } 1 2 .
R p = k p [ M ] { f ( Φ R ρ ) I ( x ) [ 1 T ( t ) ] k t } 1 2 = κ ( t ) [ M ] [ I ( x ) ] 1 2 ,
T ( t ) = E + G [ 1 exp ( a 0 t + a 1 t 2 ) ] ,
u ( x , t ) t = x [ D ( x , t ) u ( x , t ) t ] F ( x , t ) u ( x , t ) ,
I ( x , t ) = I 0 [ 1 + V cos ( K x ) ] ,
F ( x , t ) = F 0 ( t ) [ 1 + V cos ( K x ) ] γ A γ ( t ) ,
u ( x , t ) = i = 0 u i ( t ) cos ( i K x ) .
x = U 0 i d ρ ( t ) .
F ( x , t ) = κ I 0 γ ( 1 B ) Θ [ U 0 i d ρ ( t ) ] [ 1 + V cos ( K x ) ] γ A γ ( t ) ,
d ρ ( t ) d t = β ρ ( t ) ,
ρ ( t ) = ρ 0 exp [ k I 0 ( 1 B ) t ] ,
d u 0 ( ξ ) d ξ = H ( ξ ) A ( ξ ) u 0 ( ξ ) 1 2 H ( ξ ) A ( ξ ) V u 1 ( ξ ) ,
d u 1 ( ξ ) d ξ = H ( ξ ) A ( ξ ) V u 0 ( ξ ) { H ( ξ ) A ( ξ ) + R exp [ α H ( ξ ) ξ ] cosh [ α H ( ξ ) V ξ ] } u 1 ( ξ ) ,
ξ = κ I 0 1 2 t , R = D K 2 f 0 ,
H ( ξ ) = Θ [ U 0 i d ρ 0 exp ( k ( 1 B ) κ ξ ) ] ,
A ( ξ ) = 1 T ( ξ ) .
N ( x , t ) = t i t F ( x , t ) u ( x , t ) d t .
N ( x , t ) = i = 0 2 N i ( t ) cos ( i K x ) .
N 1 ( ξ ) = 0 ξ H ( ξ ) A ( ξ ) [ V u 0 ( ξ ) + u 1 ( ξ ) + 1 2 V u 2 ( ξ ) ] d ξ .
η ( ξ ) = sin 2 [ π d λ cos θ C N 1 ( ξ ) ] ,
t i = 1 k I 0 ( 1 B ) ln ( i d ρ 0 U 0 ) .

Metrics