Abstract

Using a canonical pump–probe experimental technique, we studied terahertz (THz) wave generation and detection by optical rectification and mixing in Czochralski-grown periodically poled Mg:Y:LiNbO3 (PPLN) crystals. THz waves with frequencies at 1.37 and 0.68 THz as well as 1.8 THz were obtained for PPLN with nonlinear grating periods of 30 and 60μm, respectively. A general theoretical model was developed by considering the dispersion and damping of a low-frequency phonon-polariton mode. Our results show that THz waves are generated in forward and backward directions by pumping pulse rectification. The generated THz waves depend on the spectral shape of the laser pulses, quasi-phase mismatches, and dispersion characteristics of a crystal.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Y. Han and X.-C. Zhang, "Free-space coherent broadband terahertz time-domain spectroscopy," Meas. Sci. Technol. 12, 1747-1756 (2001).
    [CrossRef]
  2. J. Shan, A. Nahata, and T. F. Heinz, "Terahertz time-domain spectroscopy based on nonlinear optics," J. Nonlinear Opt. Phys. Mater. 11, 31-48 (2002).
    [CrossRef]
  3. G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
    [CrossRef]
  4. G. C. Cho, W. Kutt, and H. Kurz, "Subpicosecond time-resolved coherent-phonon oscillations in GaAs," Phys. Rev. Lett. 65, 764-766 (1990).
    [CrossRef] [PubMed]
  5. B. C. Johnson, H. E. Puthoff, J. SooHoo, and S. S. Sussman, "Power and linewidth of tunable stimulated far-infrared emission in LiNbO3," Appl. Phys. Lett. 18, 181-183 (1971).
    [CrossRef]
  6. K. H. Yang, P. L. Richards, and Y.-R. Shen, "Generation of far-infrared radiation by picosecond light pulses in LiNbO3," Appl. Phys. Lett. 19, 320-323 (1971).
    [CrossRef]
  7. L. Xu, X.-C. Zhang, and D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
    [CrossRef]
  8. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
    [CrossRef]
  9. A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
    [CrossRef]
  10. Y.-S. Lee, T. Meade, M. DeCamp, and T. B. Norris, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
    [CrossRef]
  11. Y.-S. Lee, T. Meade, N. Amer, and W. C. Hurlbut, "Terahertz pulse shaping via optical rectification in poled lithium niobate," Appl. Phys. Lett. 82, 170-172 (2003).
    [CrossRef]
  12. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, "Terahertz polariton propagation in patterned materials," Nat. Mater. 1, 95-98 (2002).
    [CrossRef]
  13. D. W. Ward. J. D. Beer, T. Feurer, E. R. Statz, N. S. Stoyanov, and K. A. Nelson, "Coherent control of phonon polaritons in a terahertz resonator fabricated with femtosecond laser machining," Opt. Lett. 29, 2671-2673 (2004).
    [CrossRef] [PubMed]
  14. K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997).
    [CrossRef]
  15. K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
    [CrossRef]
  16. C. Weiss, G. Torosyan, J.-P. Meyn, R. Wallenstein, and R. Beigang, "Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate," Opt. Express 8, 497-502 (2001).
    [CrossRef] [PubMed]
  17. D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
    [CrossRef]
  18. N. F. Evlanova, I. I. Naumova, T. O. Chaplina, S. A. Blokhin, and S. V. Lavrishchev, "Periodically poled Y:LiNbO3 single crystal: impurity distribution and domain wall location," J. Cryst. Growth 223, 156-160 (2001).
    [CrossRef]
  19. I. I. Naumova, N. F. Evlanova, S. A. Blokhin, and S. V. Lavrishchev, "Correlation between impurity distribution and location of ferroelectric domain walls in Nd:Mg:LiNbO3 single crystal," J. Cryst. Growth 187, 102-106 (1998).
    [CrossRef]
  20. Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996).
    [CrossRef]
  21. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, and M. Chiarini, "Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography," Opt. Express 11, 392-405 (2003).
    [CrossRef] [PubMed]
  22. J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, "Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals," Phys. Rev. Lett. 89, 047401-1-047401-4 (2002).
    [CrossRef]
  23. G. H. Ma, J. He, C.-H. Kang, and S. H. Tang, "Excited state dynamics studies of iron(III) phthalocyanine using femtosecond pump-probe techniques," Chem. Phys. Lett. 370, 293-299 (2003).
    [CrossRef]
  24. S. Smolorz and F. Wise, "Time-resolved nonlinear refraction in femtosecond laser gain media," Opt. Lett. 23, 1381-1383 (1998).
    [CrossRef]
  25. Y. Q. Qin, H. Su, and S. H. Tang, "Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice," Appl. Phys. Lett. 83, 1071-1073 (2003).
    [CrossRef]
  26. G. Kh. Kitaeva and A. N. Penin, "Diagnostics of the inhomogeneous distribution of quadratic optical susceptibility over parametric scattering spectra," Quantum Electron. 34, 597-611 (2004).
    [CrossRef]
  27. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 8, pp. 110-116.
  28. D. H. Auston, "Subpicosecond electro-optic shock waves," Appl. Phys. Lett. 43, 713-715 (1983).
    [CrossRef]
  29. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and P. R. Smith, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
    [CrossRef]
  30. D. H. Auston and M. C. Nuss, "Electrooptical generation and detection of femtosecond electrical transients," IEEE J. Quantum Electron. 24, 184-197 (1988).
    [CrossRef]
  31. G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
    [CrossRef]
  32. T. Qiu and M. Maier, "Long-distance propagation and damping of low-frequency phonon polaritons in LiNbO3," Phys. Rev. B 56, R5717-R5720 (1997).
    [CrossRef]
  33. U. T. Schwarz and M. Maier, "Frequency dependence of phonon-polariton damping in lithium niobate," Phys. Rev. B 53, 5074-5077 (1996).
    [CrossRef]
  34. G. Kh. Kitaeva, A. A. Mikhailovsky, I. I. Naumova, A. A. Mikhailovsky, and A. N. Penin, "Visible and infrared dispersion of the refractive indices in periodically poled and single domain Nd:Mg:LiNbO3 crystals," Appl. Phys. B 66, 201-205 (1998).
    [CrossRef]

2004 (3)

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

D. W. Ward. J. D. Beer, T. Feurer, E. R. Statz, N. S. Stoyanov, and K. A. Nelson, "Coherent control of phonon polaritons in a terahertz resonator fabricated with femtosecond laser machining," Opt. Lett. 29, 2671-2673 (2004).
[CrossRef] [PubMed]

G. Kh. Kitaeva and A. N. Penin, "Diagnostics of the inhomogeneous distribution of quadratic optical susceptibility over parametric scattering spectra," Quantum Electron. 34, 597-611 (2004).
[CrossRef]

2003 (5)

G. H. Ma, J. He, C.-H. Kang, and S. H. Tang, "Excited state dynamics studies of iron(III) phthalocyanine using femtosecond pump-probe techniques," Chem. Phys. Lett. 370, 293-299 (2003).
[CrossRef]

S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, and M. Chiarini, "Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography," Opt. Express 11, 392-405 (2003).
[CrossRef] [PubMed]

Y. Q. Qin, H. Su, and S. H. Tang, "Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice," Appl. Phys. Lett. 83, 1071-1073 (2003).
[CrossRef]

Y.-S. Lee, T. Meade, N. Amer, and W. C. Hurlbut, "Terahertz pulse shaping via optical rectification in poled lithium niobate," Appl. Phys. Lett. 82, 170-172 (2003).
[CrossRef]

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

2002 (3)

J. Shan, A. Nahata, and T. F. Heinz, "Terahertz time-domain spectroscopy based on nonlinear optics," J. Nonlinear Opt. Phys. Mater. 11, 31-48 (2002).
[CrossRef]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, "Terahertz polariton propagation in patterned materials," Nat. Mater. 1, 95-98 (2002).
[CrossRef]

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, "Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals," Phys. Rev. Lett. 89, 047401-1-047401-4 (2002).
[CrossRef]

2001 (5)

N. F. Evlanova, I. I. Naumova, T. O. Chaplina, S. A. Blokhin, and S. V. Lavrishchev, "Periodically poled Y:LiNbO3 single crystal: impurity distribution and domain wall location," J. Cryst. Growth 223, 156-160 (2001).
[CrossRef]

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
[CrossRef]

K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
[CrossRef]

C. Weiss, G. Torosyan, J.-P. Meyn, R. Wallenstein, and R. Beigang, "Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate," Opt. Express 8, 497-502 (2001).
[CrossRef] [PubMed]

P. Y. Han and X.-C. Zhang, "Free-space coherent broadband terahertz time-domain spectroscopy," Meas. Sci. Technol. 12, 1747-1756 (2001).
[CrossRef]

2000 (1)

Y.-S. Lee, T. Meade, M. DeCamp, and T. B. Norris, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

1998 (3)

G. Kh. Kitaeva, A. A. Mikhailovsky, I. I. Naumova, A. A. Mikhailovsky, and A. N. Penin, "Visible and infrared dispersion of the refractive indices in periodically poled and single domain Nd:Mg:LiNbO3 crystals," Appl. Phys. B 66, 201-205 (1998).
[CrossRef]

I. I. Naumova, N. F. Evlanova, S. A. Blokhin, and S. V. Lavrishchev, "Correlation between impurity distribution and location of ferroelectric domain walls in Nd:Mg:LiNbO3 single crystal," J. Cryst. Growth 187, 102-106 (1998).
[CrossRef]

S. Smolorz and F. Wise, "Time-resolved nonlinear refraction in femtosecond laser gain media," Opt. Lett. 23, 1381-1383 (1998).
[CrossRef]

1997 (2)

T. Qiu and M. Maier, "Long-distance propagation and damping of low-frequency phonon polaritons in LiNbO3," Phys. Rev. B 56, R5717-R5720 (1997).
[CrossRef]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997).
[CrossRef]

1996 (3)

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

U. T. Schwarz and M. Maier, "Frequency dependence of phonon-polariton damping in lithium niobate," Phys. Rev. B 53, 5074-5077 (1996).
[CrossRef]

Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996).
[CrossRef]

1992 (1)

L. Xu, X.-C. Zhang, and D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

1990 (1)

G. C. Cho, W. Kutt, and H. Kurz, "Subpicosecond time-resolved coherent-phonon oscillations in GaAs," Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

1988 (1)

D. H. Auston and M. C. Nuss, "Electrooptical generation and detection of femtosecond electrical transients," IEEE J. Quantum Electron. 24, 184-197 (1988).
[CrossRef]

1984 (2)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and P. R. Smith, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

1983 (1)

D. H. Auston, "Subpicosecond electro-optic shock waves," Appl. Phys. Lett. 43, 713-715 (1983).
[CrossRef]

1971 (2)

B. C. Johnson, H. E. Puthoff, J. SooHoo, and S. S. Sussman, "Power and linewidth of tunable stimulated far-infrared emission in LiNbO3," Appl. Phys. Lett. 18, 181-183 (1971).
[CrossRef]

K. H. Yang, P. L. Richards, and Y.-R. Shen, "Generation of far-infrared radiation by picosecond light pulses in LiNbO3," Appl. Phys. Lett. 19, 320-323 (1971).
[CrossRef]

Almasi, G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Amer, N.

Y.-S. Lee, T. Meade, N. Amer, and W. C. Hurlbut, "Terahertz pulse shaping via optical rectification in poled lithium niobate," Appl. Phys. Lett. 82, 170-172 (2003).
[CrossRef]

Auston, D. H.

L. Xu, X.-C. Zhang, and D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

D. H. Auston and M. C. Nuss, "Electrooptical generation and detection of femtosecond electrical transients," IEEE J. Quantum Electron. 24, 184-197 (1988).
[CrossRef]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and P. R. Smith, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

D. H. Auston, "Subpicosecond electro-optic shock waves," Appl. Phys. Lett. 43, 713-715 (1983).
[CrossRef]

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Beer, J. D.

Beigang, R.

Blokhin, S. A.

N. F. Evlanova, I. I. Naumova, T. O. Chaplina, S. A. Blokhin, and S. V. Lavrishchev, "Periodically poled Y:LiNbO3 single crystal: impurity distribution and domain wall location," J. Cryst. Growth 223, 156-160 (2001).
[CrossRef]

I. I. Naumova, N. F. Evlanova, S. A. Blokhin, and S. V. Lavrishchev, "Correlation between impurity distribution and location of ferroelectric domain walls in Nd:Mg:LiNbO3 single crystal," J. Cryst. Growth 187, 102-106 (1998).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Carr, G. L.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

Caumes, J.-P.

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, "Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals," Phys. Rev. Lett. 89, 047401-1-047401-4 (2002).
[CrossRef]

Chaplina, T. O.

N. F. Evlanova, I. I. Naumova, T. O. Chaplina, S. A. Blokhin, and S. V. Lavrishchev, "Periodically poled Y:LiNbO3 single crystal: impurity distribution and domain wall location," J. Cryst. Growth 223, 156-160 (2001).
[CrossRef]

Cheng, X. F.

Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996).
[CrossRef]

Cheung, K. P.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and P. R. Smith, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

Chiarini, M.

Cho, G. C.

G. C. Cho, W. Kutt, and H. Kurz, "Subpicosecond time-resolved coherent-phonon oscillations in GaAs," Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

De Natale, P.

De Nicola, S.

DeCamp, M.

Y.-S. Lee, T. Meade, M. DeCamp, and T. B. Norris, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Evlanova, N. F.

N. F. Evlanova, I. I. Naumova, T. O. Chaplina, S. A. Blokhin, and S. V. Lavrishchev, "Periodically poled Y:LiNbO3 single crystal: impurity distribution and domain wall location," J. Cryst. Growth 223, 156-160 (2001).
[CrossRef]

I. I. Naumova, N. F. Evlanova, S. A. Blokhin, and S. V. Lavrishchev, "Correlation between impurity distribution and location of ferroelectric domain walls in Nd:Mg:LiNbO3 single crystal," J. Cryst. Growth 187, 102-106 (1998).
[CrossRef]

Ferraro, P.

Feurer, T.

Finizio, A.

Freysz, E.

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, "Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals," Phys. Rev. Lett. 89, 047401-1-047401-4 (2002).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Grilli, S.

Gubeli, J. F.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

Guo, L. J.

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
[CrossRef]

Han, P. Y.

P. Y. Han and X.-C. Zhang, "Free-space coherent broadband terahertz time-domain spectroscopy," Meas. Sci. Technol. 12, 1747-1756 (2001).
[CrossRef]

He, J.

G. H. Ma, J. He, C.-H. Kang, and S. H. Tang, "Excited state dynamics studies of iron(III) phthalocyanine using femtosecond pump-probe techniques," Chem. Phys. Lett. 370, 293-299 (2003).
[CrossRef]

Hebling, J.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Heinz, T. F.

J. Shan, A. Nahata, and T. F. Heinz, "Terahertz time-domain spectroscopy based on nonlinear optics," J. Nonlinear Opt. Phys. Mater. 11, 31-48 (2002).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Huang, Y.

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
[CrossRef]

Hurlbut, W. C.

Y.-S. Lee, T. Meade, N. Amer, and W. C. Hurlbut, "Terahertz pulse shaping via optical rectification in poled lithium niobate," Appl. Phys. Lett. 82, 170-172 (2003).
[CrossRef]

Imai, K.

K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
[CrossRef]

Ito, H.

K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
[CrossRef]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997).
[CrossRef]

Johnson, B. C.

B. C. Johnson, H. E. Puthoff, J. SooHoo, and S. S. Sussman, "Power and linewidth of tunable stimulated far-infrared emission in LiNbO3," Appl. Phys. Lett. 18, 181-183 (1971).
[CrossRef]

Jordan, K.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

Kang, C.-H.

G. H. Ma, J. He, C.-H. Kang, and S. H. Tang, "Excited state dynamics studies of iron(III) phthalocyanine using femtosecond pump-probe techniques," Chem. Phys. Lett. 370, 293-299 (2003).
[CrossRef]

Kawase, K.

K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
[CrossRef]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997).
[CrossRef]

Kitaeva, G. Kh.

G. Kh. Kitaeva and A. N. Penin, "Diagnostics of the inhomogeneous distribution of quadratic optical susceptibility over parametric scattering spectra," Quantum Electron. 34, 597-611 (2004).
[CrossRef]

G. Kh. Kitaeva, A. A. Mikhailovsky, I. I. Naumova, A. A. Mikhailovsky, and A. N. Penin, "Visible and infrared dispersion of the refractive indices in periodically poled and single domain Nd:Mg:LiNbO3 crystals," Appl. Phys. B 66, 201-205 (1998).
[CrossRef]

Kuhl, J.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Kurz, H.

G. C. Cho, W. Kutt, and H. Kurz, "Subpicosecond time-resolved coherent-phonon oscillations in GaAs," Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

Kutt, W.

G. C. Cho, W. Kutt, and H. Kurz, "Subpicosecond time-resolved coherent-phonon oscillations in GaAs," Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

Lavrishchev, S. V.

N. F. Evlanova, I. I. Naumova, T. O. Chaplina, S. A. Blokhin, and S. V. Lavrishchev, "Periodically poled Y:LiNbO3 single crystal: impurity distribution and domain wall location," J. Cryst. Growth 223, 156-160 (2001).
[CrossRef]

I. I. Naumova, N. F. Evlanova, S. A. Blokhin, and S. V. Lavrishchev, "Correlation between impurity distribution and location of ferroelectric domain walls in Nd:Mg:LiNbO3 single crystal," J. Cryst. Growth 187, 102-106 (1998).
[CrossRef]

Lee, Y.-S.

Y.-S. Lee, T. Meade, N. Amer, and W. C. Hurlbut, "Terahertz pulse shaping via optical rectification in poled lithium niobate," Appl. Phys. Lett. 82, 170-172 (2003).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, and T. B. Norris, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Liu, Y.

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
[CrossRef]

Lu, Y. G.

Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996).
[CrossRef]

Lu, Y. L.

Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996).
[CrossRef]

Luo, G. P.

Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996).
[CrossRef]

Ma, G. H.

G. H. Ma, J. He, C.-H. Kang, and S. H. Tang, "Excited state dynamics studies of iron(III) phthalocyanine using femtosecond pump-probe techniques," Chem. Phys. Lett. 370, 293-299 (2003).
[CrossRef]

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
[CrossRef]

Maier, M.

T. Qiu and M. Maier, "Long-distance propagation and damping of low-frequency phonon polaritons in LiNbO3," Phys. Rev. B 56, R5717-R5720 (1997).
[CrossRef]

U. T. Schwarz and M. Maier, "Frequency dependence of phonon-polariton damping in lithium niobate," Phys. Rev. B 53, 5074-5077 (1996).
[CrossRef]

Martin, M. C.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

McKinney, W. R.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

Meade, T.

Y.-S. Lee, T. Meade, N. Amer, and W. C. Hurlbut, "Terahertz pulse shaping via optical rectification in poled lithium niobate," Appl. Phys. Lett. 82, 170-172 (2003).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, and T. B. Norris, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Meyn, J.-P.

Mi, J.

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
[CrossRef]

Mikhailovsky, A. A.

G. Kh. Kitaeva, A. A. Mikhailovsky, I. I. Naumova, A. A. Mikhailovsky, and A. N. Penin, "Visible and infrared dispersion of the refractive indices in periodically poled and single domain Nd:Mg:LiNbO3 crystals," Appl. Phys. B 66, 201-205 (1998).
[CrossRef]

G. Kh. Kitaeva, A. A. Mikhailovsky, I. I. Naumova, A. A. Mikhailovsky, and A. N. Penin, "Visible and infrared dispersion of the refractive indices in periodically poled and single domain Nd:Mg:LiNbO3 crystals," Appl. Phys. B 66, 201-205 (1998).
[CrossRef]

Ming, N. B.

Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996).
[CrossRef]

Nahata, A.

J. Shan, A. Nahata, and T. F. Heinz, "Terahertz time-domain spectroscopy based on nonlinear optics," J. Nonlinear Opt. Phys. Mater. 11, 31-48 (2002).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Nakamura, K.

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997).
[CrossRef]

Naumova, I. I.

N. F. Evlanova, I. I. Naumova, T. O. Chaplina, S. A. Blokhin, and S. V. Lavrishchev, "Periodically poled Y:LiNbO3 single crystal: impurity distribution and domain wall location," J. Cryst. Growth 223, 156-160 (2001).
[CrossRef]

I. I. Naumova, N. F. Evlanova, S. A. Blokhin, and S. V. Lavrishchev, "Correlation between impurity distribution and location of ferroelectric domain walls in Nd:Mg:LiNbO3 single crystal," J. Cryst. Growth 187, 102-106 (1998).
[CrossRef]

G. Kh. Kitaeva, A. A. Mikhailovsky, I. I. Naumova, A. A. Mikhailovsky, and A. N. Penin, "Visible and infrared dispersion of the refractive indices in periodically poled and single domain Nd:Mg:LiNbO3 crystals," Appl. Phys. B 66, 201-205 (1998).
[CrossRef]

Neil, G. R.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

Nelson, K. A.

Norris, T. B.

Y.-S. Lee, T. Meade, M. DeCamp, and T. B. Norris, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Nuss, M. C.

D. H. Auston and M. C. Nuss, "Electrooptical generation and detection of femtosecond electrical transients," IEEE J. Quantum Electron. 24, 184-197 (1988).
[CrossRef]

Pan, D. C.

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
[CrossRef]

Penin, A. N.

G. Kh. Kitaeva and A. N. Penin, "Diagnostics of the inhomogeneous distribution of quadratic optical susceptibility over parametric scattering spectra," Quantum Electron. 34, 597-611 (2004).
[CrossRef]

G. Kh. Kitaeva, A. A. Mikhailovsky, I. I. Naumova, A. A. Mikhailovsky, and A. N. Penin, "Visible and infrared dispersion of the refractive indices in periodically poled and single domain Nd:Mg:LiNbO3 crystals," Appl. Phys. B 66, 201-205 (1998).
[CrossRef]

Pierattini, G.

Puthoff, H. E.

B. C. Johnson, H. E. Puthoff, J. SooHoo, and S. S. Sussman, "Power and linewidth of tunable stimulated far-infrared emission in LiNbO3," Appl. Phys. Lett. 18, 181-183 (1971).
[CrossRef]

Qian, S. X.

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
[CrossRef]

Qin, Y. Q.

Y. Q. Qin, H. Su, and S. H. Tang, "Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice," Appl. Phys. Lett. 83, 1071-1073 (2003).
[CrossRef]

Qiu, T.

T. Qiu and M. Maier, "Long-distance propagation and damping of low-frequency phonon polaritons in LiNbO3," Phys. Rev. B 56, R5717-R5720 (1997).
[CrossRef]

Richards, P. L.

K. H. Yang, P. L. Richards, and Y.-R. Shen, "Generation of far-infrared radiation by picosecond light pulses in LiNbO3," Appl. Phys. Lett. 19, 320-323 (1971).
[CrossRef]

Rouyer, C.

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, "Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals," Phys. Rev. Lett. 89, 047401-1-047401-4 (2002).
[CrossRef]

Sato, M.

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997).
[CrossRef]

Schwarz, U. T.

U. T. Schwarz and M. Maier, "Frequency dependence of phonon-polariton damping in lithium niobate," Phys. Rev. B 53, 5074-5077 (1996).
[CrossRef]

Shan, J.

J. Shan, A. Nahata, and T. F. Heinz, "Terahertz time-domain spectroscopy based on nonlinear optics," J. Nonlinear Opt. Phys. Mater. 11, 31-48 (2002).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 8, pp. 110-116.

Shen, Y.-R.

K. H. Yang, P. L. Richards, and Y.-R. Shen, "Generation of far-infrared radiation by picosecond light pulses in LiNbO3," Appl. Phys. Lett. 19, 320-323 (1971).
[CrossRef]

Shikata, J.

K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
[CrossRef]

Shinn, M.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

Smith, P. R.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and P. R. Smith, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

Smolorz, S.

SooHoo, J.

B. C. Johnson, H. E. Puthoff, J. SooHoo, and S. S. Sussman, "Power and linewidth of tunable stimulated far-infrared emission in LiNbO3," Appl. Phys. Lett. 18, 181-183 (1971).
[CrossRef]

Statz, E. R.

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Stoyanov, N. S.

Su, H.

Y. Q. Qin, H. Su, and S. H. Tang, "Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice," Appl. Phys. Lett. 83, 1071-1073 (2003).
[CrossRef]

Sussman, S. S.

B. C. Johnson, H. E. Puthoff, J. SooHoo, and S. S. Sussman, "Power and linewidth of tunable stimulated far-infrared emission in LiNbO3," Appl. Phys. Lett. 18, 181-183 (1971).
[CrossRef]

Tang, S. H.

Y. Q. Qin, H. Su, and S. H. Tang, "Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice," Appl. Phys. Lett. 83, 1071-1073 (2003).
[CrossRef]

G. H. Ma, J. He, C.-H. Kang, and S. H. Tang, "Excited state dynamics studies of iron(III) phthalocyanine using femtosecond pump-probe techniques," Chem. Phys. Lett. 370, 293-299 (2003).
[CrossRef]

Tani, M.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

Taniuchi, T.

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Torosyan, G.

Valdmanis, J. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and P. R. Smith, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

Videau, L.

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, "Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals," Phys. Rev. Lett. 89, 047401-1-047401-4 (2002).
[CrossRef]

Wallenstein, R.

Ward, D. W.

Weiss, C.

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Williams, G. P.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

Wise, F.

Xu, L.

L. Xu, X.-C. Zhang, and D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

Xue, C. C.

Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996).
[CrossRef]

Yang, K. H.

K. H. Yang, P. L. Richards, and Y.-R. Shen, "Generation of far-infrared radiation by picosecond light pulses in LiNbO3," Appl. Phys. Lett. 19, 320-323 (1971).
[CrossRef]

Zhang, X.-C.

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

P. Y. Han and X.-C. Zhang, "Free-space coherent broadband terahertz time-domain spectroscopy," Meas. Sci. Technol. 12, 1747-1756 (2001).
[CrossRef]

L. Xu, X.-C. Zhang, and D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

Appl. Phys. B (2)

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

G. Kh. Kitaeva, A. A. Mikhailovsky, I. I. Naumova, A. A. Mikhailovsky, and A. N. Penin, "Visible and infrared dispersion of the refractive indices in periodically poled and single domain Nd:Mg:LiNbO3 crystals," Appl. Phys. B 66, 201-205 (1998).
[CrossRef]

Appl. Phys. Lett. (12)

Y. Q. Qin, H. Su, and S. H. Tang, "Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice," Appl. Phys. Lett. 83, 1071-1073 (2003).
[CrossRef]

D. H. Auston, "Subpicosecond electro-optic shock waves," Appl. Phys. Lett. 43, 713-715 (1983).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Y.-S. Lee, T. Meade, M. DeCamp, and T. B. Norris, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Y.-S. Lee, T. Meade, N. Amer, and W. C. Hurlbut, "Terahertz pulse shaping via optical rectification in poled lithium niobate," Appl. Phys. Lett. 82, 170-172 (2003).
[CrossRef]

B. C. Johnson, H. E. Puthoff, J. SooHoo, and S. S. Sussman, "Power and linewidth of tunable stimulated far-infrared emission in LiNbO3," Appl. Phys. Lett. 18, 181-183 (1971).
[CrossRef]

K. H. Yang, P. L. Richards, and Y.-R. Shen, "Generation of far-infrared radiation by picosecond light pulses in LiNbO3," Appl. Phys. Lett. 19, 320-323 (1971).
[CrossRef]

L. Xu, X.-C. Zhang, and D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electro-optic materials," Appl. Phys. Lett. 61, 1784-1786 (1992).
[CrossRef]

Y. L. Lu, Y. G. Lu, X. F. Cheng, G. P. Luo, C. C. Xue, and N. B. Ming, "Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice," Appl. Phys. Lett. 68, 2642-2644 (1996).
[CrossRef]

K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, "Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition," Appl. Phys. Lett. 71, 753-755 (1997).
[CrossRef]

K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Appl. Phys. Lett. 78, 2819-2821 (2001).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Chem. Phys. Lett. (1)

G. H. Ma, J. He, C.-H. Kang, and S. H. Tang, "Excited state dynamics studies of iron(III) phthalocyanine using femtosecond pump-probe techniques," Chem. Phys. Lett. 370, 293-299 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. H. Auston and M. C. Nuss, "Electrooptical generation and detection of femtosecond electrical transients," IEEE J. Quantum Electron. 24, 184-197 (1988).
[CrossRef]

J. Cryst. Growth (2)

N. F. Evlanova, I. I. Naumova, T. O. Chaplina, S. A. Blokhin, and S. V. Lavrishchev, "Periodically poled Y:LiNbO3 single crystal: impurity distribution and domain wall location," J. Cryst. Growth 223, 156-160 (2001).
[CrossRef]

I. I. Naumova, N. F. Evlanova, S. A. Blokhin, and S. V. Lavrishchev, "Correlation between impurity distribution and location of ferroelectric domain walls in Nd:Mg:LiNbO3 single crystal," J. Cryst. Growth 187, 102-106 (1998).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

J. Shan, A. Nahata, and T. F. Heinz, "Terahertz time-domain spectroscopy based on nonlinear optics," J. Nonlinear Opt. Phys. Mater. 11, 31-48 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

P. Y. Han and X.-C. Zhang, "Free-space coherent broadband terahertz time-domain spectroscopy," Meas. Sci. Technol. 12, 1747-1756 (2001).
[CrossRef]

Nat. Mater. (1)

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, "Terahertz polariton propagation in patterned materials," Nat. Mater. 1, 95-98 (2002).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

G. R. Neil, G. L. Carr, J. F. Gubeli III, K. Jordan, M. C. Martin, W. R. McKinney, M. Shinn, M. Tani, G. P. Williams, and X.-C. Zhang, "Production of high power femtosecond terahertz radiation," Nucl. Instrum. Methods Phys. Res. A 507, 537-540 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

T. Qiu and M. Maier, "Long-distance propagation and damping of low-frequency phonon polaritons in LiNbO3," Phys. Rev. B 56, R5717-R5720 (1997).
[CrossRef]

U. T. Schwarz and M. Maier, "Frequency dependence of phonon-polariton damping in lithium niobate," Phys. Rev. B 53, 5074-5077 (1996).
[CrossRef]

Phys. Rev. Lett. (3)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and P. R. Smith, "Cherenkov radiation from femtosecond optical pulses in electro-optic media," Phys. Rev. Lett. 53, 1555-1558 (1984).
[CrossRef]

G. C. Cho, W. Kutt, and H. Kurz, "Subpicosecond time-resolved coherent-phonon oscillations in GaAs," Phys. Rev. Lett. 65, 764-766 (1990).
[CrossRef] [PubMed]

J.-P. Caumes, L. Videau, C. Rouyer, and E. Freysz, "Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc blende crystals," Phys. Rev. Lett. 89, 047401-1-047401-4 (2002).
[CrossRef]

Quantum Electron. (1)

G. Kh. Kitaeva and A. N. Penin, "Diagnostics of the inhomogeneous distribution of quadratic optical susceptibility over parametric scattering spectra," Quantum Electron. 34, 597-611 (2004).
[CrossRef]

Solid State Commun. (1)

G. H. Ma, L. J. Guo, J. Mi, Y. Liu, S. X. Qian, D. C. Pan, and Y. Huang, "Femtosecond nonlinear optical response of metallophthalocyanine films," Solid State Commun. 118, 633-638 (2001).
[CrossRef]

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 8, pp. 110-116.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Transient transmittance changes of the probe beam for sample 1 with a 30 μ m grating period and total sample thickness of 17 mm. (b) Power spectrum of Fourier transform of (a). (c) Geometric layout of pump and probe beams relative to the samples.

Fig. 2
Fig. 2

(a) Transient transmittance changes of the probe beam for sample 2 with a 60 μ m grating period and total sample thickness of 0.48 mm. (b) Power spectrum of Fourier transform of (a). (c) Probe beam intensity versus amplitude of the modulation in probe beam transmittance for sample 2.

Fig. 3
Fig. 3

Absorption coefficient α (solid curve) and refractive index n (dotted curve) versus THz frequency Ω in a Mg : LiNbO 3 crystal. The curves are calculated with Eqs. (15, 16).

Fig. 4
Fig. 4

Calculated quasi-phase-matching factor u ( Ω ) for nonlinear gratings in sample 1 (upper panel) and sample 2 (lower panel).

Fig. 5
Fig. 5

Calculated THz power spectrum and experimental data for (a) sample 1 and (b) sample 2. The calculation is carried out according to Eq. (14) with a pulse duration of 100, 150, and 200 fs; The dispersion and damping of the wave vector in the THz region are obtained from Fig. 3.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

2 E TH ( Ω , x ) x 2 + ϵ ( Ω ) Ω 2 c 2 E TH ( Ω , x ) = 4 π Ω 2 c 2 P I ( 2 ) ( Ω , x ) ,
P I ( 2 ) ( Ω , x ) = χ ( 2 ) ( x ) C ( Ω ) 2 π exp ( i Ω ν gr x ) ,
χ ( 2 ) ( x ) = m = χ m exp ( i m q x ) ,
χ m = χ ¯ ( 1 ) m n π m { ( 1 ) m sin m π ρ + i [ 1 ( 1 ) m cos m π ρ ] } ,
χ ( 2 ) ( x ) = 2 i χ z z z ( 1 ) n π [ exp ( i 2 π d x ) exp ( i 2 π d x ) ] .
E + ( x ) = 2 π i Ω 2 k c 2 0 x P ( 2 ) ( Ω , x ) exp ( i k x ) d x ,
E ( x ) = 2 π i Ω 2 k c 2 x L P ( 2 ) ( Ω , x ) exp ( i k x ) d x .
E TH ( Ω , x ) = 2 χ z z z ( 1 ) n Ω 2 C ( Ω ) π k c 2 { x exp ( i k x k x 2 ) [ exp ( i Δ 1 x 2 ) f ( Δ 1 , x ) exp ( i Δ 2 x 2 ) f ( Δ 2 , x ) ] ( L x ) exp [ i k x k ( L x ) 2 ] [ exp ( i Δ 3 ( L + x ) 2 ) f ( Δ 3 , L x ) exp ( i Δ 4 ( L + x ) 2 ) f ( Δ 4 , L x ) ] } .
f ( Δ , l ) = exp [ ( i Δ + k ) l 2 ] exp [ ( i Δ + k ) l 2 ] ( i Δ + k ) l .
Δ 1 = Ω ν gr + 2 π d k = 0 ,
Δ 2 = Ω ν gr 2 π d k = 0 ,
Δ 3 = Ω ν gr + 2 π d k = 0 ,
Δ 4 = Ω ν gr 2 π d k = 0 .
E pr ( ω , x ) x = 2 π i ω 2 k pr c 2 P I I ( 2 ) ( ω , x ) exp ( i k pr x ) ,
P I I ( 2 ) ( ω , x ) = i χ z z z ( 1 ) n π 2 [ exp ( i 2 π d x ) exp ( i 2 π d x ) ] × 0 { E pr ( ω + Ω , x ) exp [ i k pr ( ω + Ω ) x ] E TH * ( Ω , x ) + E pr ( ω Ω , x ) exp [ i k pr ( ω Ω ) x ] E TH ( Ω , x ) } d Ω .
Δ E pr ( ω , Ω , L ) = i L C ( Ω ) 4 ( χ z z z ) 2 Ω 2 π 2 c 3 ω n ( ω ) [ E pr ( ω Ω ) u ( Ω ) + E pr ( ω + Ω ) u * ( Ω ) ] ,
u ( Ω ) = 1 k × { s = 1 4 1 Δ s i k + 4 π d ( Δ 1 i k ) ( Δ 2 i k ) [ f ( Δ 1 , L ) ] exp [ i ( Δ 1 i k ) L 2 ] f ( Δ 2 , L ) exp [ i ( Δ 2 i k ) L 2 ] + 4 π d ( Δ 3 i k ) ( Δ 4 i k ) [ f ( Δ 3 , L ) ] exp [ i ( Δ 3 i k ) L 2 ] f ( Δ 4 , L ) exp [ i ( Δ 4 i k ) L 2 ] } .
Δ T = d t { d ω [ E pr ( ω ) + Δ E pr ( ω , L ) ] exp ( i ω t ) 2 d ω E pr ( ω ) exp ( i ω t ) 2 } d t [ d ω E pr ( ω ) exp ( i ω t ) d ω Δ E pr * ( ω , L ) exp ( i ω t ) + c.c. ] = d t { d ω d ω d Ω Δ E pr * ( ω * , Ω , L ) E pr ( ω ) exp [ i ( ω ω ) t ] + c.c. } ,
Δ T = L ( χ z z z ) 2 n opt d Ω C ( Ω ) Ω 2 u ( Ω ) d t exp ( i Ω t ) t E pr ( t ) 2 .
Δ T ( τ del ) = L I pr ( χ z z z ) 2 I pump n opt d Ω C ( Ω ) 2 Ω 3 u ( Ω ) exp ( i Ω τ del ) .
Δ T Ω = [ C ( Ω ) ] 2 Ω 3 u ( Ω ) .
ϵ ( Ω ) = ϵ + S 0 Ω 0 2 Ω 0 2 Ω 2 i Γ Ω .
Γ = Γ 0 + 1 i Ω j K j Ω j 2 Ω 2 i Γ j Ω + 1 i Ω Δ 2 1 Ω τ .

Metrics