Abstract

A one-dimensional anisotropic photonic crystal, which consists of alternating layers of an anisotropic and isotropic media, is studied by solving Maxwell’s equations using the plane-wave method. For on-axis propagation in such a one-dimensional photonic crystal, the allowed two polarizations in the anisotropic medium will experience different refractive indices and thus the degeneracy in the photonic band structure disappears. Bandgap tuning based on a liquid crystal and the Pockel effect has been investigated. For a liquid-crystal infiltrated one-dimensional photonic crystal, it is shown how the optic axis orientation of the liquid crystal affects the bandgap. The effect of rotation of the principal axes caused by an external electric field to the electro-optic tunability of the photonic crystal made of Pockel materials is also analyzed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Y. Soon, J. W. Haus, M. Scalora, and C. Sibilia, "One-dimensional photonic crystal optical limiter," Opt. Express 11, 2007-2018 (2003).
    [CrossRef] [PubMed]
  2. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
    [CrossRef] [PubMed]
  3. T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
    [CrossRef]
  4. I. D. Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, "Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters," Opt. Express 11, 430-436 (2003).
    [CrossRef] [PubMed]
  5. I. Abdulhalim, "Reflective phase-only modulation using one-dimensional photonic crystals," J. Opt. 2, L9-L11 (2000).
    [CrossRef]
  6. A. Mandatori, C. Sibilia, M. Centini, G. D'Aguanno, M. Bertolotti, M. Scalora, M. Bloemer, and C. M. Bowden, "Birefringence in one-dimensional finite photonic bandgap structure," J. Opt. Soc. Am. B 20, 504-513 (2003).
    [CrossRef]
  7. K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
    [CrossRef]
  8. K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
    [CrossRef]
  9. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
    [CrossRef]
  10. R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004).
    [CrossRef]
  11. C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals," Appl. Phys. Lett. 79, 9-11 (2001).
    [CrossRef]
  12. T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005).
    [CrossRef]
  13. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
    [CrossRef]
  14. C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
    [CrossRef]
  15. C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
    [CrossRef]
  16. D. M. Pustai, A. Sharkawy, S. Shi, and D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opt. 41, 5574-5579 (2002).
    [CrossRef] [PubMed]
  17. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electrooptic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
    [CrossRef] [PubMed]
  18. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
    [CrossRef]
  19. H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2004).
    [CrossRef]
  20. H. Takeda and K. Yoshino, "Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect," Phys. Rev. E 69, 016605 (2004).
    [CrossRef]
  21. Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
    [CrossRef]
  22. I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
    [CrossRef]
  23. M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.
  24. D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
    [CrossRef]
  25. S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
    [CrossRef]
  26. K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
    [CrossRef] [PubMed]
  27. K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
    [CrossRef]
  28. S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Opt. Express 11, 167-175 (2003).
    [CrossRef] [PubMed]
  29. S. Guo, F. Wu, S. Albin, and R. S. Rogowski, "Photonic band gap analysis using finite-difference frequency-domain method," Opt. Express 12, 1741-1746 (2004).
    [CrossRef] [PubMed]
  30. C. P. Yu and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Opt. Express 12, 1397-1408 (2004).
    [CrossRef] [PubMed]
  31. E. Cojocaru, "Forbidden gaps in periodic anisotropic layered media," Appl. Opt. 39, 4641-4648 (2000).
    [CrossRef]
  32. J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995), pp. 19-20, 38-53, 65-66.
  33. J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986), pp. 62-75.
  34. A. Yariv and P. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-71, 223, 227-238, 244-245.
  35. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Springer, 1995), pp. 15-16, 62-63.
  36. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995), pp. 241-243.
  37. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
    [CrossRef]
  38. D. Doroski, S. H. Perlmutter, and G. Moddel, "Alignment layers for improved surface-stabilized ferroelectric liquid-crystal devices," Appl. Opt. 33, 2608-2610 (1994).
    [CrossRef] [PubMed]
  39. J. L. Janning, "Thin film surface orientation for liquid crystals," Appl. Phys. Lett. 21, 173-174 (1972).
    [CrossRef]
  40. D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
    [CrossRef] [PubMed]
  41. K. Usami, K. Sakamoto, Y. Uehara, and S. Ushioda, "Transfer of the in-plane molecular orientation of polyimide film surface to liquid crystal monolayer," Appl. Phys. Lett. 86, 211906 (2005).
    [CrossRef]
  42. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996), pp. 844-846.
  43. V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.
  44. M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic properties of lithium niobate crystals for extremely high external electric fields," Appl. Phys. B 76, 403-406 (2003).
    [CrossRef]
  45. H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998).
    [CrossRef]

2005 (2)

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005).
[CrossRef]

K. Usami, K. Sakamoto, Y. Uehara, and S. Ushioda, "Transfer of the in-plane molecular orientation of polyimide film surface to liquid crystal monolayer," Appl. Phys. Lett. 86, 211906 (2005).
[CrossRef]

2004 (7)

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[CrossRef]

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004).
[CrossRef]

H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2004).
[CrossRef]

H. Takeda and K. Yoshino, "Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect," Phys. Rev. E 69, 016605 (2004).
[CrossRef]

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

C. P. Yu and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Opt. Express 12, 1397-1408 (2004).
[CrossRef] [PubMed]

S. Guo, F. Wu, S. Albin, and R. S. Rogowski, "Photonic band gap analysis using finite-difference frequency-domain method," Opt. Express 12, 1741-1746 (2004).
[CrossRef] [PubMed]

2003 (8)

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic properties of lithium niobate crystals for extremely high external electric fields," Appl. Phys. B 76, 403-406 (2003).
[CrossRef]

S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Opt. Express 11, 167-175 (2003).
[CrossRef] [PubMed]

A. Mandatori, C. Sibilia, M. Centini, G. D'Aguanno, M. Bertolotti, M. Scalora, M. Bloemer, and C. M. Bowden, "Birefringence in one-dimensional finite photonic bandgap structure," J. Opt. Soc. Am. B 20, 504-513 (2003).
[CrossRef]

I. D. Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, "Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters," Opt. Express 11, 430-436 (2003).
[CrossRef] [PubMed]

B. Y. Soon, J. W. Haus, M. Scalora, and C. Sibilia, "One-dimensional photonic crystal optical limiter," Opt. Express 11, 2007-2018 (2003).
[CrossRef] [PubMed]

2002 (2)

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

D. M. Pustai, A. Sharkawy, S. Shi, and D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opt. 41, 5574-5579 (2002).
[CrossRef] [PubMed]

2001 (5)

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals," Appl. Phys. Lett. 79, 9-11 (2001).
[CrossRef]

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electrooptic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

2000 (3)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

I. Abdulhalim, "Reflective phase-only modulation using one-dimensional photonic crystals," J. Opt. 2, L9-L11 (2000).
[CrossRef]

E. Cojocaru, "Forbidden gaps in periodic anisotropic layered media," Appl. Opt. 39, 4641-4648 (2000).
[CrossRef]

1999 (2)

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

1998 (3)

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[CrossRef]

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998).
[CrossRef]

1994 (2)

D. Doroski, S. H. Perlmutter, and G. Moddel, "Alignment layers for improved surface-stabilized ferroelectric liquid-crystal devices," Appl. Opt. 33, 2608-2610 (1994).
[CrossRef] [PubMed]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

1993 (1)

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[CrossRef]

1990 (1)

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

1972 (1)

J. L. Janning, "Thin film surface orientation for liquid crystals," Appl. Phys. Lett. 21, 173-174 (1972).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, "Reflective phase-only modulation using one-dimensional photonic crystals," J. Opt. 2, L9-L11 (2000).
[CrossRef]

Agio, M.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Aitchison, J. S.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

Aktsipetrov, O. A.

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Albin, S.

Andreani, L. C.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Arregui, F. J.

Bardon, S.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Baughman, R. H.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electrooptic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Bertolotti, M.

Birner, A.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Bloemer, M.

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

Bowden, C. M.

A. Mandatori, C. Sibilia, M. Centini, G. D'Aguanno, M. Bertolotti, M. Scalora, M. Bloemer, and C. M. Bowden, "Birefringence in one-dimensional finite photonic bandgap structure," J. Opt. Soc. Am. B 20, 504-513 (2003).
[CrossRef]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

Bowley, C. C.

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals," Appl. Phys. Lett. 79, 9-11 (2001).
[CrossRef]

Busch, K.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[CrossRef]

Buse, K.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic properties of lithium niobate crystals for extremely high external electric fields," Appl. Phys. B 76, 403-406 (2003).
[CrossRef]

Centini, M.

Chan, C. T.

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Chang, H. C.

Chen, Y.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Chen, Y. J.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005).
[CrossRef]

Clark, N. A.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electrooptic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Claus, R. O.

Cojocaru, E.

Coleman, D.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Costantini, D. M.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998).
[CrossRef]

Crawford, G. P.

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals," Appl. Phys. Lett. 79, 9-11 (2001).
[CrossRef]

D'Aguanno, G.

De Angelis, C.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

De Dood, M. J. A.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.

Dolgova, T. V.

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Doroski, D.

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

Faris, S.

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals," Appl. Phys. Lett. 79, 9-11 (2001).
[CrossRef]

Fedyanin, A.

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Forchel, A.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Fox, G. R.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998).
[CrossRef]

Fuh, A. Y.-G.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005).
[CrossRef]

Galli, M.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Gauza, S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[CrossRef]

Gosele, U.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Gu, B. Y.

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Springer, 1995), pp. 15-16, 62-63.

Guo, S.

Gurzadayan, G. G.

V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.

Ha, Y.-K.

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Hartwig, U.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic properties of lithium niobate crystals for extremely high external electric fields," Appl. Phys. B 76, 403-406 (2003).
[CrossRef]

Haus, J. W.

Hensen, T. M.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Ho, K.-M.

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Hsu, C. S.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[CrossRef]

Janarthanan, N.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[CrossRef]

Janning, J. L.

J. L. Janning, "Thin film surface orientation for liquid crystals," Appl. Phys. Lett. 21, 173-174 (1972).
[CrossRef]

Joannopoulus, J. D.

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995), pp. 19-20, 38-53, 65-66.

John, S.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[CrossRef]

Kamp, M.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Kang, D.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electrooptic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Kee, C.-S.

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Khoo, I. C.

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995), pp. 241-243.

Kim, J.-E.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Kleckner, T. C.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

Klopf, F.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986), pp. 62-75.

Kossyrev, P. A.

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals," Appl. Phys. Lett. 79, 9-11 (2001).
[CrossRef]

Ky, N. H.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998).
[CrossRef]

Lalanne, P.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Lee, J.-C.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Lehmann, V.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Leonard, S. W.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Li, Z. Y.

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

Lim, H.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Limberger, H. G.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998).
[CrossRef]

Lin, T. H.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005).
[CrossRef]

Linden, S.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

Liu, J.-H.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005).
[CrossRef]

Locatelli, A.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

Luennemann, M.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic properties of lithium niobate crystals for extremely high external electric fields," Appl. Phys. B 76, 403-406 (2003).
[CrossRef]

Maclennan, J. E.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electrooptic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Madikovski, A. I.

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Mandatori, A.

Marabelli, F.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Marovsky, G.

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Martemyanov, M. G.

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Matias, I. R.

Matsuhisa, Y.

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004).
[CrossRef]

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

Mattei, G.

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Meade, R. D.

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995), pp. 19-20, 38-53, 65-66.

Moddel, G.

Modotto, D.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

Mondia, J. P.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Morandotti, R.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

Moroz, A.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Mueller, D.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Muller, C. A. P.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998).
[CrossRef]

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.

Ozaki, M.

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Ozaki, R.

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

Panotopoulos, G.

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic properties of lithium niobate crystals for extremely high external electric fields," Appl. Phys. B 76, 403-406 (2003).
[CrossRef]

Park, H. Y.

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Patrini, M.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Perlmutter, S. H.

Peyrade, D.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Polman, A.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Prather, D. W.

Pustai, D. M.

Reithmaier, J. P.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Rogowski, R. S.

Sakamoto, K.

K. Usami, K. Sakamoto, Y. Uehara, and S. Ushioda, "Transfer of the in-plane molecular orientation of polyimide film surface to liquid crystal monolayer," Appl. Phys. Lett. 86, 211906 (2005).
[CrossRef]

Salath'e, R. P.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998).
[CrossRef]

Scalora, M.

Schuhmacher, D.

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Schuller, C.

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

Shao, R.-F.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Sharkawy, A.

Shi, S.

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Sibilia, C.

Silberstein, E.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Sloff, L. H.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Soon, B. Y.

Soukoulis, C. M.

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Stanley, C. R.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

Stroud, D.

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996), pp. 844-846.

Takeda, H.

H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2004).
[CrossRef]

H. Takeda and K. Yoshino, "Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect," Phys. Rev. E 69, 016605 (2004).
[CrossRef]

Talneau, A.

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Toader, O.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Uehara, Y.

K. Usami, K. Sakamoto, Y. Uehara, and S. Ushioda, "Transfer of the in-plane molecular orientation of polyimide film surface to liquid crystal monolayer," Appl. Phys. Lett. 86, 211906 (2005).
[CrossRef]

Usami, K.

K. Usami, K. Sakamoto, Y. Uehara, and S. Ushioda, "Transfer of the in-plane molecular orientation of polyimide film surface to liquid crystal monolayer," Appl. Phys. Lett. 86, 211906 (2005).
[CrossRef]

Ushioda, S.

K. Usami, K. Sakamoto, Y. Uehara, and S. Ushioda, "Transfer of the in-plane molecular orientation of polyimide film surface to liquid crystal monolayer," Appl. Phys. Lett. 86, 211906 (2005).
[CrossRef]

Van Blaaderen, A.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Van Der Drift, E. W. J. M.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Van Driel, H. M.

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

Villar, I. D.

Vossen, D. L. J.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Walba, D. M.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Wang, J.

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

Wen, C. H.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[CrossRef]

Winn, J. N.

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995), pp. 19-20, 38-53, 65-66.

Wu, C. H.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005).
[CrossRef]

Wu, F.

Wu, S. T.

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[CrossRef]

Yakovlev, V. A.

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Yang, P.-C.

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005).
[CrossRef]

Yang, Y.-C.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-71, 223, 227-238, 244-245.

Yeh, P.

A. Yariv and P. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-71, 223, 227-238, 244-245.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Springer, 1995), pp. 15-16, 62-63.

Yoshino, K.

H. Takeda and K. Yoshino, "Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect," Phys. Rev. E 69, 016605 (2004).
[CrossRef]

H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2004).
[CrossRef]

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Young, K. H.

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

Yu, C. P.

Zabel, I. H. H.

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[CrossRef]

Zakhidov, A. A.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electrooptic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

Zijilstra, T.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Appl. Opt. (3)

Appl. Phys. B (1)

M. Luennemann, U. Hartwig, G. Panotopoulos, and K. Buse, "Electrooptic properties of lithium niobate crystals for extremely high external electric fields," Appl. Phys. B 76, 403-406 (2003).
[CrossRef]

Appl. Phys. Lett. (10)

K. Usami, K. Sakamoto, Y. Uehara, and S. Ushioda, "Transfer of the in-plane molecular orientation of polyimide film surface to liquid crystal monolayer," Appl. Phys. Lett. 86, 211906 (2005).
[CrossRef]

J. L. Janning, "Thin film surface orientation for liquid crystals," Appl. Phys. Lett. 21, 173-174 (1972).
[CrossRef]

K. H. Young, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, "Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals," Appl. Phys. Lett. 79, 15-17 (2001).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003).
[CrossRef]

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004).
[CrossRef]

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals," Appl. Phys. Lett. 79, 9-11 (2001).
[CrossRef]

T. H. Lin, Y. J. Chen, C. H. Wu, A. Y.-G. Fuh, J.-H. Liu, and P.-C. Yang, "Cholesteric liquid crystal laser with wide tuning capability," Appl. Phys. Lett. 86, 161120 (2005).
[CrossRef]

C. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

S. Linden, J. P. Mondia, H. M. Van Driel, T. C. Kleckner, C. R. Stanley, D. Modotto, A. Locatelli, C. De Angelis, R. Morandotti, and J. S. Aitchison, "Nonlinear transmission properties of a deep-etched microstructured waveguide," Appl. Phys. Lett. 84, 5437-5439 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salath'e, C. A. P. Muller, and G. R. Fox, "Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating," IEEE Photon. Technol. Lett. 10, 361-363 (1998).
[CrossRef]

J. Appl. Phys. (1)

H. Takeda and K. Yoshino, "Tunable photonic band schemes of opals and inverse opals infiltrated with liquid crystals," J. Appl. Phys. 92, 5658-5662 (2004).
[CrossRef]

J. Opt. (1)

I. Abdulhalim, "Reflective phase-only modulation using one-dimensional photonic crystals," J. Opt. 2, L9-L11 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

T. V. Dolgova, A. I. Madikovski, M. G. Martemyanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. Fedyanin, and O. A. Aktsipetrov, "Giant second harmonic generation in microcavities based on porous silicon photonic crystals," JETP Lett. 73, 6-9 (2001).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys., Part 1 43, 7634-7638 (2004).
[CrossRef]

Microelectron. Eng. (1)

D. Peyrade, Y. Chen, A. Talneau, M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, E. Silberstein, and P. Lalanne, "Fabrication and optical measurements of silicon on insulator photonic nanostructures," Microelectron. Eng. 61-62, 529-536 (2002).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (4)

Z. Y. Li, J. Wang, and B. Y. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721-3729 (1998).
[CrossRef]

I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993).
[CrossRef]

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, "Tunable two-dimensional photonic crystals using liquid crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000).
[CrossRef]

C.-S. Kee, H. Lim, Y.-K. Ha, J.-E. Kim, and H. Y. Park, "Two-dimensional tunable metallic photonic crystals infiltrated with liquid crystals," Phys. Rev. B 64, 085114 (2001).
[CrossRef]

Phys. Rev. E (2)

H. Takeda and K. Yoshino, "Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect," Phys. Rev. E 69, 016605 (2004).
[CrossRef]

K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998).
[CrossRef]

Phys. Rev. Lett. (5)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

K.-M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electrooptic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao, S. Bardon, and D. M. Walba, "Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals," Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Other (8)

J. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995), pp. 19-20, 38-53, 65-66.

J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986), pp. 62-75.

A. Yariv and P. Yeh, Optical Wave in Crystals (Wiley, 1996), pp. 69-71, 223, 227-238, 244-245.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Springer, 1995), pp. 15-16, 62-63.

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995), pp. 241-243.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996), pp. 844-846.

V. G. Dmitriev, G. G. Gurzadayan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 120-121.

M. J. A. De Dood, L. H. Sloff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijilstra, E. W. J. M. Van Der Drift, A. Van Blaaderen, and A. Polman, "1, 2 and 3 dimensional photonic crystals made using ion beams: fabrication and optical density of states," in Proceedings of NATO Advanced Study Institute on Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer Academic, 2000), pp. 555-566.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Band diagram for a 1D PC with silicon LC configuration. The width of the LC layer is 0.68 a . The band structures of o and e polarizations are represented as dashed and solid lines, respectively. (b) Transmission spectrum of e polarization for the same 1D PC configuration in (a), computed with the transfer-matrix method. (c) Gap-to-midgap ratio for the first-order gap of a 1D PC with silicon LC configuration for two kinds of LCs, E7 and phenylacetylene.

Fig. 2
Fig. 2

Laboratory coordinate system of a 1D PC used in the calculation. The optic axis is represented as s, and k is the propagation direction.

Fig. 3
Fig. 3

(a) First-order gap of a silicon LC 1D PC (with a LC layer thickness of 0.68 a ) as a function of θ in the x L z plane ( ϕ = 90 ° ) . (b) The first gap-to-midgap ratio for the overall bandgap (both polarizations) of a silicon LC 1D PC (with a LC layer thickness of 0.68 a ) as a function of θ in the x L z plane ( ϕ = 90 ° ) . (c) Tunability of e polarization as a function of ϕ.

Fig. 4
Fig. 4

Gap-to-midgap ratio of a ZnTe–air PC, with a ZnTe layer width of 0.25 a (normalized quarter-wavelength thickness) as a function of applied field along the x direction, (rotated) and z direction (unrotated).

Tables (1)

Tables Icon

Table 1 Point Group and Electric Field Direction Under Which the Principal Axis Along the Periodicity Direction z of the 1D PC Does Not Rotate

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

× [ ϵ 1 ( r ) ( × H ) ] = ( ω c ) 2 H ,
ϵ 1 ( r ) = ϵ b 1 + ( ϵ a 1 ϵ b 1 ) S ( r R ) ,
x ̂ = ( sin α cos α 0 ) ,
y ̂ = ( cos β cos α cos β sin α sin β ) ,
z ̂ = ( sin β cos α sin β sin α cos β ) ,
ϵ p 1 = [ ϵ x 1 0 0 0 ϵ y 1 0 0 0 ϵ z 1 ] ,
Q = [ sin α cos α 0 cos β cos α cos β sin α sin β sin β cos α sin β sin α cos β ] .
ϵ a 11 1 = ϵ x 1 sin 2 α + ϵ y 1 cos 2 α ,
ϵ a 12 1 = ϵ 21 1 = ( ϵ x 1 ϵ y 1 ) cos β sin α cos α ,
ϵ a 22 1 = ( ϵ x 1 cos 2 α + ϵ y 1 sin 2 α ) cos 2 β + ϵ z 1 sin 2 β ,
ϵ a 13 1 = ϵ 31 1 = ( ϵ x 1 ϵ y 1 ) sin β sin α cos α ,
ϵ a 23 1 = ϵ 32 1 = ( ϵ x 1 cos 2 α + ϵ y 1 sin 2 α ϵ z 1 ) sin β cos β ,
ϵ a 33 1 = ( ϵ x 1 cos 2 β + ϵ y 1 sin 2 β ) sin 2 β + ϵ z 1 cos 2 β .
G k + G k + G [ g 2 ϵ G G 1 g 2 g 2 ϵ G G 1 g 1 g 1 ϵ G G 1 g 2 g 1 ϵ G G 1 g 1 ] [ h 1 ( G ) h 2 ( G ) ] = ( ω c ) 2 [ h 1 ( G ) h 2 ( G ) ] ,
ϵ a 1
= [ ϵ o 1 0 0 0 ϵ o 1 cos 2 β + ϵ e 1 sin 2 β ( ϵ o 1 ϵ e 1 ) sin β cos β 0 ( ϵ o 1 ϵ e 1 ) sin β cos β ϵ o 1 sin 2 β + ϵ e 1 cos 2 β ] .
G k + G k + G ϵ o 1 h 1 G G ( G ) = ω 2 c 2 h 1 ( G ) ,
G k + G k + G ϵ e β 1 h 2 G G ( G ) = ω 2 c 2 h 2 ( G ) .
w = ( λ 4 n LC ) ( λ 4 n LC + λ 4 n Si ) a ,
β = cos 1 ( cos θ sin ϕ ) ,
x 2 n x 2 + y 2 n y 2 + z 2 n z 2 = 1 ,
x 2 n x 2 + y 2 n y 2 + z 2 n z 2 = 1 ,
( 1 n o 2 + r 13 E z ) x 2 + ( 1 n o 2 + r 13 E z ) y 2 + ( 1 n e 2 + r 33 E z ) z 2 = 1 .
n x n o 1 2 r 13 n o 3 E z ,
n y n o 1 2 r 13 n o 3 E z ,
n z n e 1 2 r 33 n e 3 E z .
x 2 n o 2 + y 2 n o 2 + z 2 n o 2 + 2 r 41 y z E x + 2 r 41 x z E y + 2 r 41 x y E z = 1 .
n x n o ,
n y n o + 1 2 r 41 n o 3 E x ,
n z n o 1 2 r 41 n o 3 E x .
1 n 2 ( 45° ) = cos 2 ( 45° ) n y 2 + sin 2 ( 45° ) n z 2 .

Metrics