Abstract

We report on the design, fabrication, and characterization of switchable quasi-crystal structures in holographic polymer-dispersed liquid-crystal materials using a multibeam hololithography exposure technique. By interfering multiple coherent laser beams on a liquid crystal–polymer mixture, one can create quasi-crystal morphologies on a mesoscale. The quasi-crystal structures with five-, seven-, and ninefold symmetries are confirmed by mapping of scanning electron microscope images to the calculated isointensity profiles and comparison of their diffraction patterns to the Fourier transforms of the calculated isointensity profiles. Diffraction properties and electro-optic switching parameters of the quasi-crystal samples are presented, and their refractive index modulation is estimated to be 3×103 using coupled-wave theory.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992).
    [CrossRef]
  2. S. John and J. Wang, "Quantum optics of localized light in a photonic band gap," Phys. Rev. B 43, 12772-12789 (1991).
    [CrossRef]
  3. S. John and J. Wang, "Quantum electrodynamics near a photonic band gap--photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
    [CrossRef] [PubMed]
  4. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
    [CrossRef] [PubMed]
  5. Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
    [CrossRef]
  6. X. Zhang, Z. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105 (2001).
    [CrossRef]
  7. M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B 63, 161104 (2001).
    [CrossRef]
  8. J. García-Escudero, "Quasicrystal tilings with nine-fold and fifteen-fold symmetries and their Bragg spectra," J. Phys. Soc. Jpn. 67, 71-77 (1998).
    [CrossRef]
  9. K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, "Design of ultrawideband photonic crystals for broadband antenna applications," Electron. Lett. 30, 2166-2167 (1994).
    [CrossRef]
  10. M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
    [CrossRef]
  11. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
    [CrossRef] [PubMed]
  12. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003).
    [CrossRef]
  13. S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110 (2005).
    [CrossRef]
  14. G. P. Crawford, "Electrically switchable Bragg gratings," Opt. Photon. News, April 2003, pp. 54-59.
  15. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
    [CrossRef] [PubMed]
  16. R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, "Electrically switchable Bragg gratings from liquid crystal/polymer composites," Appl. Spectrosc. 54, 12A-28A (2000).
    [CrossRef]
  17. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, "Holographic polymer-dispersed liquid crystals (H-PDLCs)," Annu. Rev. Mater. Sci. 30, 83-115 (2000).
    [CrossRef]
  18. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
    [CrossRef]
  19. R. Caputo, A. Veltri, C. Umeton, and A. V. Sukhov, "Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings," J. Opt. Soc. Am. B 22, 735-742 (2005).
    [CrossRef]
  20. R. Caputo, A. Veltri, C. P. Umeton, and A. V. Sukhov, "Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure," J. Opt. Soc. Am. B 21, 1939-1947 (2004).
    [CrossRef]
  21. A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, "Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices," Opt. Lett. 29, 1405-1407 (2004).
    [CrossRef] [PubMed]
  22. D. E. Lucchetta, L. Criante, and F. Simoni, "Determination of small anisotropy of holographic phase gratings," Opt. Lett. 28, 725-727 (2003).
    [CrossRef] [PubMed]
  23. C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000).
    [CrossRef]
  24. L. Z. Cai, X. L. Yang, and Y. R. Yang, "All fourteen Bravais lattices can be formed by interference of four noncoplanar beams," Opt. Lett. 27, 900-902 (2002).
    [CrossRef]
  25. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  26. M. J. Escuti, J. Qi, and G. P. Crawford, "Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology," Appl. Phys. Lett. 83, 1331-1333 (2003).
    [CrossRef]
  27. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and S. Chandra, "Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal," Opt. Express 10, 1074-1082 (2002).
    [PubMed]
  28. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002).
    [CrossRef]
  29. M. J. Escuti and G. P. Crawford, "Mesoscale three dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic," Mol. Cryst. Liq. Cryst. 421, 23-36 (2004).
    [CrossRef]
  30. K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, "Holographically formed liquid-crystal/polymer device for reflective color display," J. Soc. Inf. Disp. 2, 37-40 (1994).
    [CrossRef]
  31. S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, "Switchable Bragg grating devices for telecommunications applications," Opt. Eng. 41, 1774-1779 (2002).
    [CrossRef]
  32. D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
    [CrossRef]
  33. L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, "Holographic PDLC for photonic applications," in Liquid Crystals IV, I.-C.Khoo, ed., Proc. SPIE, 4107, 46-58 (2000).
  34. G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
    [CrossRef]
  35. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
    [CrossRef]
  36. S. T. Wu and A. Y. G. Fuh, "Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings," Jpn. J. Appl. Phys. 44, 977-980 (2005).
    [CrossRef]
  37. C. C. Bowley and G. P. Crawford, "Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials," Appl. Phys. Lett. 76, 2235-2237 (2000).
    [CrossRef]
  38. K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, "Polymer scaffolding model for holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 81, 4736-4738 (2002).
    [CrossRef]
  39. J. Qi, M. E. Sousa, A. K. Fontecchio, and G. P. Crawford, "Temporally multiplexed holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 82, 1652-1654 (2003).
    [CrossRef]
  40. D. W. Allender, G. P. Crawford, and J. W. Doane, "Determination of the liquid-crystal surface elastic constant K24," Phys. Rev. Lett. 67, 1442-1445 (1991).
    [CrossRef] [PubMed]
  41. G. P. Crawford, D. W. Allender, and J. W. Doane, "Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities," Phys. Rev. A 45, 8693-8708 (1992).
    [CrossRef] [PubMed]
  42. International Tables for Crystallography (Reidel, 1983), Vol. A, p. 179.
  43. D. Shechtman, I. Blech, D. Gratias, and J. W. Chan, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1953 (1984).
    [CrossRef]
  44. P. W. Stephens and A. I. Goldman, "Sharp diffraction maxima from an icosahedral glass," Phys. Rev. Lett. 56, 1168-1171 (1986).
    [CrossRef] [PubMed]
  45. P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, 1987).
  46. V. Elser, "The diffraction pattern of projected structures," Acta Crystallogr. 42, 36-43 (1986).
    [CrossRef]
  47. A. L. Mackay and D. N. Quinquangula, "On the pentagonal snowflake," Sov. Phys. Crystallogr. 26, 517-522 (1981).
  48. S. E. Burkov, "Structure model of the Al-Cu-Co decagonal quasicrystal," Phys. Rev. Lett. 67, 614-617 (1991).
    [CrossRef] [PubMed]
  49. C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
    [CrossRef]
  50. S. S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999).
    [CrossRef]
  51. C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
    [CrossRef]
  52. R. C. Gauthier and K. Mnaymneh, "Photonic band gap properties of 12-fold quasi-crystal determined through FDFD analysis," Opt. Express 13, 1985-1998 (2005).
    [CrossRef] [PubMed]
  53. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
    [CrossRef] [PubMed]
  54. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  55. J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450 (2004).
    [CrossRef]
  56. M. DeSarkar, J. Qi, and G. P. Crawford, "Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings," Polymer 43, 7335-7344 (2002).
    [CrossRef]
  57. A. Singh, S. Ranganathan, and L. A. Bendersky, "Quasicrystalline phases and their approximants in Al-Mn-Zn alloys," Acta Mater. 45, 5327-5336 (1997).
    [CrossRef]
  58. J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
    [CrossRef]
  59. P. Ukleja and D. Finotello, "NMR studies of orientational order," in Liquid Crystals: Experimental Study of Physical Properties and Phase Translations, S.Kumar, ed. (Cambridge U. Press, 2001), pp. 155-196.
  60. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  61. M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings," J. Appl. Phys. 90, 3831-3837 (2001).
    [CrossRef]

2005

S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110 (2005).
[CrossRef]

R. Caputo, A. Veltri, C. Umeton, and A. V. Sukhov, "Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings," J. Opt. Soc. Am. B 22, 735-742 (2005).
[CrossRef]

S. T. Wu and A. Y. G. Fuh, "Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings," Jpn. J. Appl. Phys. 44, 977-980 (2005).
[CrossRef]

R. C. Gauthier and K. Mnaymneh, "Photonic band gap properties of 12-fold quasi-crystal determined through FDFD analysis," Opt. Express 13, 1985-1998 (2005).
[CrossRef] [PubMed]

2004

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450 (2004).
[CrossRef]

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

M. J. Escuti and G. P. Crawford, "Mesoscale three dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic," Mol. Cryst. Liq. Cryst. 421, 23-36 (2004).
[CrossRef]

R. Caputo, A. Veltri, C. P. Umeton, and A. V. Sukhov, "Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure," J. Opt. Soc. Am. B 21, 1939-1947 (2004).
[CrossRef]

A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, "Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices," Opt. Lett. 29, 1405-1407 (2004).
[CrossRef] [PubMed]

2003

D. E. Lucchetta, L. Criante, and F. Simoni, "Determination of small anisotropy of holographic phase gratings," Opt. Lett. 28, 725-727 (2003).
[CrossRef] [PubMed]

M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
[CrossRef] [PubMed]

M. J. Escuti, J. Qi, and G. P. Crawford, "Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology," Appl. Phys. Lett. 83, 1331-1333 (2003).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003).
[CrossRef]

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

J. Qi, M. E. Sousa, A. K. Fontecchio, and G. P. Crawford, "Temporally multiplexed holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 82, 1652-1654 (2003).
[CrossRef]

2002

M. DeSarkar, J. Qi, and G. P. Crawford, "Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings," Polymer 43, 7335-7344 (2002).
[CrossRef]

S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, "Switchable Bragg grating devices for telecommunications applications," Opt. Eng. 41, 1774-1779 (2002).
[CrossRef]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, "Polymer scaffolding model for holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 81, 4736-4738 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and S. Chandra, "Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal," Opt. Express 10, 1074-1082 (2002).
[PubMed]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Yang, "All fourteen Bravais lattices can be formed by interference of four noncoplanar beams," Opt. Lett. 27, 900-902 (2002).
[CrossRef]

2001

X. Zhang, Z. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105 (2001).
[CrossRef]

M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B 63, 161104 (2001).
[CrossRef]

M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings," J. Appl. Phys. 90, 3831-3837 (2001).
[CrossRef]

2000

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, "Electrically switchable Bragg gratings from liquid crystal/polymer composites," Appl. Spectrosc. 54, 12A-28A (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, "Holographic polymer-dispersed liquid crystals (H-PDLCs)," Annu. Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

C. C. Bowley and G. P. Crawford, "Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials," Appl. Phys. Lett. 76, 2235-2237 (2000).
[CrossRef]

D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
[CrossRef]

1999

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
[CrossRef]

S. S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999).
[CrossRef]

1998

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

J. García-Escudero, "Quasicrystal tilings with nine-fold and fifteen-fold symmetries and their Bragg spectra," J. Phys. Soc. Jpn. 67, 71-77 (1998).
[CrossRef]

1997

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

A. Singh, S. Ranganathan, and L. A. Bendersky, "Quasicrystalline phases and their approximants in Al-Mn-Zn alloys," Acta Mater. 45, 5327-5336 (1997).
[CrossRef]

1996

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

1994

K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, "Holographically formed liquid-crystal/polymer device for reflective color display," J. Soc. Inf. Disp. 2, 37-40 (1994).
[CrossRef]

K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, "Design of ultrawideband photonic crystals for broadband antenna applications," Electron. Lett. 30, 2166-2167 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

1992

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992).
[CrossRef]

G. P. Crawford, D. W. Allender, and J. W. Doane, "Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities," Phys. Rev. A 45, 8693-8708 (1992).
[CrossRef] [PubMed]

1991

D. W. Allender, G. P. Crawford, and J. W. Doane, "Determination of the liquid-crystal surface elastic constant K24," Phys. Rev. Lett. 67, 1442-1445 (1991).
[CrossRef] [PubMed]

S. E. Burkov, "Structure model of the Al-Cu-Co decagonal quasicrystal," Phys. Rev. Lett. 67, 614-617 (1991).
[CrossRef] [PubMed]

S. John and J. Wang, "Quantum optics of localized light in a photonic band gap," Phys. Rev. B 43, 12772-12789 (1991).
[CrossRef]

1990

S. John and J. Wang, "Quantum electrodynamics near a photonic band gap--photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
[CrossRef] [PubMed]

1986

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
[CrossRef]

P. W. Stephens and A. I. Goldman, "Sharp diffraction maxima from an icosahedral glass," Phys. Rev. Lett. 56, 1168-1171 (1986).
[CrossRef] [PubMed]

V. Elser, "The diffraction pattern of projected structures," Acta Crystallogr. 42, 36-43 (1986).
[CrossRef]

1984

D. Shechtman, I. Blech, D. Gratias, and J. W. Chan, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1953 (1984).
[CrossRef]

1981

A. L. Mackay and D. N. Quinquangula, "On the pentagonal snowflake," Sov. Phys. Crystallogr. 26, 517-522 (1981).

1969

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Agi, K.

K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, "Design of ultrawideband photonic crystals for broadband antenna applications," Electron. Lett. 30, 2166-2167 (1994).
[CrossRef]

Allender, D. W.

G. P. Crawford, D. W. Allender, and J. W. Doane, "Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities," Phys. Rev. A 45, 8693-8708 (1992).
[CrossRef] [PubMed]

D. W. Allender, G. P. Crawford, and J. W. Doane, "Determination of the liquid-crystal surface elastic constant K24," Phys. Rev. Lett. 67, 1442-1445 (1991).
[CrossRef] [PubMed]

Ashmead, A. C.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, "Holographic PDLC for photonic applications," in Liquid Crystals IV, I.-C.Khoo, ed., Proc. SPIE, 4107, 46-58 (2000).

Asquini, R.

Ban, S. Z.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
[CrossRef]

Baumberg, J. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Bayindir, M.

M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B 63, 161104 (2001).
[CrossRef]

Bendersky, L. A.

A. Singh, S. Ranganathan, and L. A. Bendersky, "Quasicrystalline phases and their approximants in Al-Mn-Zn alloys," Acta Mater. 45, 5327-5336 (1997).
[CrossRef]

Biswas, R.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Blech, I.

D. Shechtman, I. Blech, D. Gratias, and J. W. Chan, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1953 (1984).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Bowley, C. C.

C. C. Bowley and G. P. Crawford, "Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials," Appl. Phys. Lett. 76, 2235-2237 (2000).
[CrossRef]

C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000).
[CrossRef]

D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
[CrossRef]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992).
[CrossRef]

Brown, E. R.

K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, "Design of ultrawideband photonic crystals for broadband antenna applications," Electron. Lett. 30, 2166-2167 (1994).
[CrossRef]

Bulu, I.

M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B 63, 161104 (2001).
[CrossRef]

Bunning, T. J.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, "Electrically switchable Bragg gratings from liquid crystal/polymer composites," Appl. Spectrosc. 54, 12A-28A (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, "Holographic polymer-dispersed liquid crystals (H-PDLCs)," Annu. Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Burkov, S. E.

S. E. Burkov, "Structure model of the Al-Cu-Co decagonal quasicrystal," Phys. Rev. Lett. 67, 614-617 (1991).
[CrossRef] [PubMed]

Cai, L. Z.

Cairns, D. R.

D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Caputo, R.

Cartwright, A. N.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

Chan, C. T.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003).
[CrossRef]

X. Zhang, Z. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105 (2001).
[CrossRef]

S. S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999).
[CrossRef]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

Chan, J. W.

D. Shechtman, I. Blech, D. Gratias, and J. W. Chan, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1953 (1984).
[CrossRef]

Chan, Y. S.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

Chandra, S.

Charlton, M. D.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Cheng, B.

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Cheng, B. Y.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
[CrossRef]

Cheng, S. S.

S. S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999).
[CrossRef]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Cid, R.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, "Switchable Bragg grating devices for telecommunications applications," Opt. Eng. 41, 1774-1779 (2002).
[CrossRef]

Crawford, G. P.

S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110 (2005).
[CrossRef]

M. J. Escuti and G. P. Crawford, "Mesoscale three dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic," Mol. Cryst. Liq. Cryst. 421, 23-36 (2004).
[CrossRef]

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450 (2004).
[CrossRef]

J. Qi, M. E. Sousa, A. K. Fontecchio, and G. P. Crawford, "Temporally multiplexed holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 82, 1652-1654 (2003).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, "Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology," Appl. Phys. Lett. 83, 1331-1333 (2003).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
[CrossRef] [PubMed]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, "Polymer scaffolding model for holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 81, 4736-4738 (2002).
[CrossRef]

M. DeSarkar, J. Qi, and G. P. Crawford, "Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings," Polymer 43, 7335-7344 (2002).
[CrossRef]

M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings," J. Appl. Phys. 90, 3831-3837 (2001).
[CrossRef]

C. C. Bowley and G. P. Crawford, "Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials," Appl. Phys. Lett. 76, 2235-2237 (2000).
[CrossRef]

D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
[CrossRef]

C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000).
[CrossRef]

G. P. Crawford, D. W. Allender, and J. W. Doane, "Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities," Phys. Rev. A 45, 8693-8708 (1992).
[CrossRef] [PubMed]

D. W. Allender, G. P. Crawford, and J. W. Doane, "Determination of the liquid-crystal surface elastic constant K24," Phys. Rev. Lett. 67, 1442-1445 (1991).
[CrossRef] [PubMed]

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, "Holographic PDLC for photonic applications," in Liquid Crystals IV, I.-C.Khoo, ed., Proc. SPIE, 4107, 46-58 (2000).

G. P. Crawford, "Electrically switchable Bragg gratings," Opt. Photon. News, April 2003, pp. 54-59.

Criante, L.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

D. E. Lucchetta, L. Criante, and F. Simoni, "Determination of small anisotropy of holographic phase gratings," Opt. Lett. 28, 725-727 (2003).
[CrossRef] [PubMed]

Crouch, D.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Cubukcu, E.

M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B 63, 161104 (2001).
[CrossRef]

d'Alessandro, A.

Danworaphong, S.

D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
[CrossRef]

De Sarkar, M.

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450 (2004).
[CrossRef]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, "Polymer scaffolding model for holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 81, 4736-4738 (2002).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

DeSarkar, M.

M. DeSarkar, J. Qi, and G. P. Crawford, "Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings," Polymer 43, 7335-7344 (2002).
[CrossRef]

Dill, C.

K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, "Design of ultrawideband photonic crystals for broadband antenna applications," Electron. Lett. 30, 2166-2167 (1994).
[CrossRef]

Doane, J. W.

G. P. Crawford, D. W. Allender, and J. W. Doane, "Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities," Phys. Rev. A 45, 8693-8708 (1992).
[CrossRef] [PubMed]

D. W. Allender, G. P. Crawford, and J. W. Doane, "Determination of the liquid-crystal surface elastic constant K24," Phys. Rev. Lett. 67, 1442-1445 (1991).
[CrossRef] [PubMed]

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
[CrossRef]

Domash, L. H.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, "Holographic PDLC for photonic applications," in Liquid Crystals IV, I.-C.Khoo, ed., Proc. SPIE, 4107, 46-58 (2000).

Drevensek-Olenik, I.

M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings," J. Appl. Phys. 90, 3831-3837 (2001).
[CrossRef]

Eakin, J. N.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, "Polymer scaffolding model for holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 81, 4736-4738 (2002).
[CrossRef]

Elser, V.

V. Elser, "The diffraction pattern of projected structures," Acta Crystallogr. 42, 36-43 (1986).
[CrossRef]

Escuti, M. J.

M. J. Escuti and G. P. Crawford, "Mesoscale three dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic," Mol. Cryst. Liq. Cryst. 421, 23-36 (2004).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, "Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology," Appl. Phys. Lett. 83, 1331-1333 (2003).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
[CrossRef] [PubMed]

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Faris, S.

C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000).
[CrossRef]

Faris, S. M.

D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
[CrossRef]

Finotello, D.

P. Ukleja and D. Finotello, "NMR studies of orientational order," in Liquid Crystals: Experimental Study of Physical Properties and Phase Translations, S.Kumar, ed. (Cambridge U. Press, 2001), pp. 155-196.

Fontecchio, A. K.

J. Qi, M. E. Sousa, A. K. Fontecchio, and G. P. Crawford, "Temporally multiplexed holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 82, 1652-1654 (2003).
[CrossRef]

M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings," J. Appl. Phys. 90, 3831-3837 (2001).
[CrossRef]

D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
[CrossRef]

C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000).
[CrossRef]

Francescangeli, O.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

Fuh, A. Y.

S. T. Wu and A. Y. G. Fuh, "Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings," Jpn. J. Appl. Phys. 44, 977-980 (2005).
[CrossRef]

García-Escudero, J.

J. García-Escudero, "Quasicrystal tilings with nine-fold and fifteen-fold symmetries and their Bragg spectra," J. Phys. Soc. Jpn. 67, 71-77 (1998).
[CrossRef]

Gauthier, R. C.

Gizzi, C.

Goldman, A. I.

P. W. Stephens and A. I. Goldman, "Sharp diffraction maxima from an icosahedral glass," Phys. Rev. Lett. 56, 1168-1171 (1986).
[CrossRef] [PubMed]

Gorkhali, S. P.

S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110 (2005).
[CrossRef]

Gratias, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Chan, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1953 (1984).
[CrossRef]

Gunther, J.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, "Switchable Bragg grating devices for telecommunications applications," Opt. Eng. 41, 1774-1779 (2002).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

He, G. S.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

Ho, K. M.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Hsiao, V. K.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

Jacobs-Woodbury, R.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Jakubiak, R.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

Jazbinsek, M.

M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings," J. Appl. Phys. 90, 3831-3837 (2001).
[CrossRef]

Jin, C.

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Jin, C. J.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
[CrossRef]

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992).
[CrossRef]

John, S.

S. John and J. Wang, "Quantum optics of localized light in a photonic band gap," Phys. Rev. B 43, 12772-12789 (1991).
[CrossRef]

S. John and J. Wang, "Quantum electrodynamics near a photonic band gap--photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
[CrossRef] [PubMed]

Kato, K.

K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, "Holographically formed liquid-crystal/polymer device for reflective color display," J. Soc. Inf. Disp. 2, 37-40 (1994).
[CrossRef]

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Leung, W.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Li, L.

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450 (2004).
[CrossRef]

D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
[CrossRef]

C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000).
[CrossRef]

Li, L.-M.

S. S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999).
[CrossRef]

Li, Q.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Li, Z.

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Li, Z. L.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
[CrossRef]

Lin, J.

C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000).
[CrossRef]

Lin, T.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

Liu, Z. Y.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

Lough, B.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Lucchetta, D. E.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

D. E. Lucchetta, L. Criante, and F. Simoni, "Determination of small anisotropy of holographic phase gratings," Opt. Lett. 28, 725-727 (2003).
[CrossRef] [PubMed]

Mackay, A. L.

A. L. Mackay and D. N. Quinquangula, "On the pentagonal snowflake," Sov. Phys. Crystallogr. 26, 517-522 (1981).

Malloy, K. J.

K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, "Design of ultrawideband photonic crystals for broadband antenna applications," Electron. Lett. 30, 2166-2167 (1994).
[CrossRef]

Man, B.

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Man, B. Y.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
[CrossRef]

McCalmont, S.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

McMahon, O. B.

K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, "Design of ultrawideband photonic crystals for broadband antenna applications," Electron. Lett. 30, 2166-2167 (1994).
[CrossRef]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992).
[CrossRef]

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Mnaymneh, K.

Natarajan, L. V.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and S. Chandra, "Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal," Opt. Express 10, 1074-1082 (2002).
[PubMed]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, "Electrically switchable Bragg gratings from liquid crystal/polymer composites," Appl. Spectrosc. 54, 12A-28A (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, "Holographic polymer-dispersed liquid crystals (H-PDLCs)," Annu. Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Netti, M. C.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Ng, C. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003).
[CrossRef]

Nielsen, S.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Ostlund, S.

P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, 1987).

Ozbay, E.

M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B 63, 161104 (2001).
[CrossRef]

Parker, G. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Pogue, R. T.

Popovich, M.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, "Switchable Bragg grating devices for telecommunications applications," Opt. Eng. 41, 1774-1779 (2002).
[CrossRef]

Popovich, M. M.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, "Holographic PDLC for photonic applications," in Liquid Crystals IV, I.-C.Khoo, ed., Proc. SPIE, 4107, 46-58 (2000).

Prasad, P. N.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

Qi, J.

S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110 (2005).
[CrossRef]

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450 (2004).
[CrossRef]

J. Qi, M. E. Sousa, A. K. Fontecchio, and G. P. Crawford, "Temporally multiplexed holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 82, 1652-1654 (2003).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003).
[CrossRef] [PubMed]

M. J. Escuti, J. Qi, and G. P. Crawford, "Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology," Appl. Phys. Lett. 83, 1331-1333 (2003).
[CrossRef]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, "Polymer scaffolding model for holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 81, 4736-4738 (2002).
[CrossRef]

M. DeSarkar, J. Qi, and G. P. Crawford, "Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings," Polymer 43, 7335-7344 (2002).
[CrossRef]

Quinquangula, D. N.

A. L. Mackay and D. N. Quinquangula, "On the pentagonal snowflake," Sov. Phys. Crystallogr. 26, 517-522 (1981).

Ranganathan, S.

A. Singh, S. Ranganathan, and L. A. Bendersky, "Quasicrystalline phases and their approximants in Al-Mn-Zn alloys," Acta Mater. 45, 5327-5336 (1997).
[CrossRef]

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992).
[CrossRef]

Ritums, D.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, "Switchable Bragg grating devices for telecommunications applications," Opt. Eng. 41, 1774-1779 (2002).
[CrossRef]

Sakai, S.

K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, "Holographically formed liquid-crystal/polymer device for reflective color display," J. Soc. Inf. Disp. 2, 37-40 (1994).
[CrossRef]

Schmitt, M. G.

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Shechtman, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Chan, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1953 (1984).
[CrossRef]

Sheng, P.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003).
[CrossRef]

Sigalas, M. M.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Simoni, F.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

D. E. Lucchetta, L. Criante, and F. Simoni, "Determination of small anisotropy of holographic phase gratings," Opt. Lett. 28, 725-727 (2003).
[CrossRef] [PubMed]

Singh, A.

A. Singh, S. Ranganathan, and L. A. Bendersky, "Quasicrystalline phases and their approximants in Al-Mn-Zn alloys," Acta Mater. 45, 5327-5336 (1997).
[CrossRef]

Siwecki, S. A.

Smith, R. T.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, "Holographic PDLC for photonic applications," in Liquid Crystals IV, I.-C.Khoo, ed., Proc. SPIE, 4107, 46-58 (2000).

Sousa, M. E.

J. Qi, M. E. Sousa, A. K. Fontecchio, and G. P. Crawford, "Temporally multiplexed holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 82, 1652-1654 (2003).
[CrossRef]

Steinhardt, P. J.

P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, 1987).

Stephens, P. W.

P. W. Stephens and A. I. Goldman, "Sharp diffraction maxima from an icosahedral glass," Phys. Rev. Lett. 56, 1168-1171 (1986).
[CrossRef] [PubMed]

Storey, J.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, "Holographic PDLC for photonic applications," in Liquid Crystals IV, I.-C.Khoo, ed., Proc. SPIE, 4107, 46-58 (2000).

Sukhov, A. V.

Sun, B.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
[CrossRef]

Sutherland, R. L.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and S. Chandra, "Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal," Opt. Express 10, 1074-1082 (2002).
[PubMed]

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, "Electrically switchable Bragg gratings from liquid crystal/polymer composites," Appl. Spectrosc. 54, 12A-28A (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, "Holographic polymer-dispersed liquid crystals (H-PDLCs)," Annu. Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Tam, W. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, "Holographically formed liquid-crystal/polymer device for reflective color display," J. Soc. Inf. Disp. 2, 37-40 (1994).
[CrossRef]

Tomlin, D.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Tondiglia, V. P.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and S. Chandra, "Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal," Opt. Express 10, 1074-1082 (2002).
[PubMed]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, "Holographic polymer-dispersed liquid crystals (H-PDLCs)," Annu. Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

R. T. Pogue, R. L. Sutherland, M. G. Schmitt, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, and T. J. Bunning, "Electrically switchable Bragg gratings from liquid crystal/polymer composites," Appl. Spectrosc. 54, 12A-28A (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Tsuru, S.

K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, "Holographically formed liquid-crystal/polymer device for reflective color display," J. Soc. Inf. Disp. 2, 37-40 (1994).
[CrossRef]

Tuberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Tuttle, G.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Ukleja, P.

P. Ukleja and D. Finotello, "NMR studies of orientational order," in Liquid Crystals: Experimental Study of Physical Properties and Phase Translations, S.Kumar, ed. (Cambridge U. Press, 2001), pp. 155-196.

Umeton, C.

Umeton, C. P.

Vaia, R. A.

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

Vardanyan, K. K.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, "Polymer scaffolding model for holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 81, 4736-4738 (2002).
[CrossRef]

Vaz, N. A.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
[CrossRef]

Veltri, A.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

Wang, J.

S. John and J. Wang, "Quantum optics of localized light in a photonic band gap," Phys. Rev. B 43, 12772-12789 (1991).
[CrossRef]

S. John and J. Wang, "Quantum electrodynamics near a photonic band gap--photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
[CrossRef] [PubMed]

Wang, X.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Wu, B.-G.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
[CrossRef]

Wu, S. T.

S. T. Wu and A. Y. G. Fuh, "Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings," Jpn. J. Appl. Phys. 44, 977-980 (2005).
[CrossRef]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Yang, X. L.

Yang, Y. R.

Yeralan, S.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, "Switchable Bragg grating devices for telecommunications applications," Opt. Eng. 41, 1774-1779 (2002).
[CrossRef]

Zgonik, M.

M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings," J. Appl. Phys. 90, 3831-3837 (2001).
[CrossRef]

Zhang, D.

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Zhang, D. J.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
[CrossRef]

Zhang, X.

X. Zhang, Z. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105 (2001).
[CrossRef]

Zhang, Z.

X. Zhang, Z. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105 (2001).
[CrossRef]

Zhang, Z. Q.

S. S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999).
[CrossRef]

Zoorob, M. E.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Zumer, S.

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
[CrossRef]

Acta Crystallogr.

V. Elser, "The diffraction pattern of projected structures," Acta Crystallogr. 42, 36-43 (1986).
[CrossRef]

Acta Mater.

A. Singh, S. Ranganathan, and L. A. Bendersky, "Quasicrystalline phases and their approximants in Al-Mn-Zn alloys," Acta Mater. 45, 5327-5336 (1997).
[CrossRef]

Adv. Mater.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, "Holographic formation of electro-optical polymer-liquid crystal photonic crystals," Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Annu. Rev. Mater. Sci.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, "Holographic polymer-dispersed liquid crystals (H-PDLCs)," Annu. Rev. Mater. Sci. 30, 83-115 (2000).
[CrossRef]

Appl. Phys. Lett.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, "Electrically switchable volume gratings in polymer-dispersed liquid crystals," Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

S. P. Gorkhali, J. Qi, and G. P. Crawford, "Electrically switchable mesoscale Penrose quasicrystal structure," Appl. Phys. Lett. 86, 011110 (2005).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, "Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology," Appl. Phys. Lett. 83, 1331-1333 (2003).
[CrossRef]

C. C. Bowley, A. K. Fontecchio, G. P. Crawford, J. Lin, L. Li, and S. Faris, "Multiple gratings simultaneously formed in holographic polymer-dispersed liquid-crystal displays," Appl. Phys. Lett. 76, 523-525 (2000).
[CrossRef]

D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and S. M. Faris, "Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films," Appl. Phys. Lett. 77, 2677-2679 (2000).
[CrossRef]

C. C. Bowley and G. P. Crawford, "Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials," Appl. Phys. Lett. 76, 2235-2237 (2000).
[CrossRef]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, "Polymer scaffolding model for holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 81, 4736-4738 (2002).
[CrossRef]

J. Qi, M. E. Sousa, A. K. Fontecchio, and G. P. Crawford, "Temporally multiplexed holographic polymer-dispersed liquid crystals," Appl. Phys. Lett. 82, 1652-1654 (2003).
[CrossRef]

J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Zumer, "Field controlled light scattering from nematic microdroplets," Appl. Phys. Lett. 48, 269-271 (1986).
[CrossRef]

G. S. He, T. Lin, V. K. S. Hsiao, A. N. Cartwright, P. N. Prasad, L. V. Natarajan, V. P. Tondiglia, R. Jakubiak, R. A. Vaia, and T. J. Bunning, "Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element," Appl. Phys. Lett. 83, 2733-2735 (2003).
[CrossRef]

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, "Wavelength flipping in laser emission driven by a switchable holographic grating," Appl. Phys. Lett. 84, 837-839 (2004).
[CrossRef]

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, D. J. Zhang, S. Z. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999).
[CrossRef]

Appl. Spectrosc.

Bell Syst. Tech. J.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Electron. Lett.

K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, "Design of ultrawideband photonic crystals for broadband antenna applications," Electron. Lett. 30, 2166-2167 (1994).
[CrossRef]

J. Appl. Phys.

M. Jazbinsek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, "Characterization of holographic polymer dispersed liquid crystal transmission gratings," J. Appl. Phys. 90, 3831-3837 (2001).
[CrossRef]

J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, "Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals," J. Appl. Phys. 96, 2443-2450 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Soc. Jpn.

J. García-Escudero, "Quasicrystal tilings with nine-fold and fifteen-fold symmetries and their Bragg spectra," J. Phys. Soc. Jpn. 67, 71-77 (1998).
[CrossRef]

J. Soc. Inf. Disp.

K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, "Holographically formed liquid-crystal/polymer device for reflective color display," J. Soc. Inf. Disp. 2, 37-40 (1994).
[CrossRef]

Jpn. J. Appl. Phys.

S. T. Wu and A. Y. G. Fuh, "Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings," Jpn. J. Appl. Phys. 44, 977-980 (2005).
[CrossRef]

Microwave Opt. Technol. Lett.

M. M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band gap crystals: experiment and simulation," Microwave Opt. Technol. Lett. 15, 153-158 (1997).
[CrossRef]

Mol. Cryst. Liq. Cryst.

M. J. Escuti and G. P. Crawford, "Mesoscale three dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic," Mol. Cryst. Liq. Cryst. 421, 23-36 (2004).
[CrossRef]

Nature

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Opt. Eng.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, "Switchable Bragg grating devices for telecommunications applications," Opt. Eng. 41, 1774-1779 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

G. P. Crawford, D. W. Allender, and J. W. Doane, "Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities," Phys. Rev. A 45, 8693-8708 (1992).
[CrossRef] [PubMed]

Phys. Rev. B

S. S. M. Cheng, L.-M. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999).
[CrossRef]

C. Jin, B. Cheng, B. Man, Z. Li, and D. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

X. Zhang, Z. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105 (2001).
[CrossRef]

M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B 63, 161104 (2001).
[CrossRef]

S. John and J. Wang, "Quantum optics of localized light in a photonic band gap," Phys. Rev. B 43, 12772-12789 (1991).
[CrossRef]

Phys. Rev. Lett.

S. John and J. Wang, "Quantum electrodynamics near a photonic band gap--photon bound states and dressed atoms," Phys. Rev. Lett. 64, 2418-2421 (1990).
[CrossRef] [PubMed]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

D. W. Allender, G. P. Crawford, and J. W. Doane, "Determination of the liquid-crystal surface elastic constant K24," Phys. Rev. Lett. 67, 1442-1445 (1991).
[CrossRef] [PubMed]

S. E. Burkov, "Structure model of the Al-Cu-Co decagonal quasicrystal," Phys. Rev. Lett. 67, 614-617 (1991).
[CrossRef] [PubMed]

D. Shechtman, I. Blech, D. Gratias, and J. W. Chan, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951-1953 (1984).
[CrossRef]

P. W. Stephens and A. I. Goldman, "Sharp diffraction maxima from an icosahedral glass," Phys. Rev. Lett. 56, 1168-1171 (1986).
[CrossRef] [PubMed]

Polymer

M. DeSarkar, J. Qi, and G. P. Crawford, "Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings," Polymer 43, 7335-7344 (2002).
[CrossRef]

Science

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Sov. Phys. Crystallogr.

A. L. Mackay and D. N. Quinquangula, "On the pentagonal snowflake," Sov. Phys. Crystallogr. 26, 517-522 (1981).

Other

P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, 1987).

International Tables for Crystallography (Reidel, 1983), Vol. A, p. 179.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

P. Ukleja and D. Finotello, "NMR studies of orientational order," in Liquid Crystals: Experimental Study of Physical Properties and Phase Translations, S.Kumar, ed. (Cambridge U. Press, 2001), pp. 155-196.

G. P. Crawford, "Electrically switchable Bragg gratings," Opt. Photon. News, April 2003, pp. 54-59.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, "Holographic PDLC for photonic applications," in Liquid Crystals IV, I.-C.Khoo, ed., Proc. SPIE, 4107, 46-58 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Cubic isointensity pattern formed by four coherent laser beams (left). Polymerization occurs in the high-intensity regions of the interference pattern, diffusing LC to the lower-intensity regions and permanently capturing the intensity pattern (right).

Fig. 2
Fig. 2

(Color online) (a) Lattice formed by randomly oriented LC and polymer matrix in the H-PDLC cell produces Bragg reflection and diffraction.(b) Electric field applied across the H-PDLC cell orients the LC droplets along the field, matching the refractive index of the LC and polymer. The film is transparent to the incident white light.

Fig. 3
Fig. 3

(Color online) In-plane (top) and 3D view (middle) of isointensity profiles for five-, seven-, and ninefold symmetry quasi structures generated by interfering p-polarized beam vectors (bottom).

Fig. 4
Fig. 4

(Color online) In-plane (top) and 3D view (middle) of isointensity profiles for five-, seven-, and ninefold symmetry quasi structures generated by interfering s-polarized beam vectors (bottom).

Fig. 5
Fig. 5

(Color online) Geometrical relationship between wave vectors ( K 1 to K N solid lines), first-order reciprocal lattice vectors ( G 12 , G 23 , G 34 , G n ( n + 1 ) , G N 1 dashed lines), and higher-order reciprocal lattice vector ( G 13 , G 14 , dotted lines) for (a) five-, (b) seven-, and (c) ninefold quasi designs.

Fig. 6
Fig. 6

(Color online) High-resolution isointensity profiles for five-, seven-, and ninefold symmetry quasi crystals formed by (a)–(c) p-polarized and (d)–(f) s-polarized laser beams. Corresponding Fourier transforms illustrating the expected diffraction pattern (bottom).

Fig. 7
Fig. 7

(Color online) Computer-generated isointensity profile (top) for five-, seven-, and ninefold symmetry quasi structures compared with the SEM image of the sample (bottom). The comparison shows the LC droplet encapsulated within the polymer boundary at quasi-lattice points.

Fig. 8
Fig. 8

Fivefold quasiperiodic arrangement of the circles is superimposed on top of the computer-generated irradiance pattern (top) and SEM image (bottom) showing the presence of fivefold quasiperiodicity. The color gradient represents the intensity, red as constructive and blue as destructive interference regions, respectively. Destructive interference regions from the computer-generated Penrose model, represented by the dark outline on the right half of the image, is superimposed on top of the SEM image demonstrating the perfectly captured LC droplets in the Penrose quasi structure.

Fig. 9
Fig. 9

Diffraction pattern using a red wavelength laser ( λ = 633 nm , top), green wavelength laser ( λ = 532 nm , middle), and full-color diffraction pattern using a broadband focused white light (bottom) for five-, seven-, and ninefold symmetry quasi-crystal H-PDLC samples. Zero-order diffraction spot is dumped into the beam stop to make the higher-order spots easily visible in all the pictures.

Fig. 10
Fig. 10

(Color online) Fourier diffraction obtained from the isointensity profiles (bottom) compared with the corresponding actual diffraction patterns (top) of the five-, seven-, and ninefold symmetry quasi crystals.

Fig. 11
Fig. 11

First-order diffraction and zero-order transmission versus applied voltage (top). Diffraction efficiency versus applied voltage (bottom) for five-, seven-, and ninefold symmetry quasi crystals.

Fig. 12
Fig. 12

(Color online) Measured electro-optical response time (on, off) of five-, seven-, and ninefold quasi crystals.

Tables (1)

Tables Icon

Table 1 Calculated Pitch Length Corresponding to All the Primitive Reciprocal Lattice Vectors Using Bragg’s Law a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) R { l = 1 N m = 1 N E l E m exp [ i ( K l K m ) r ] } = R { l = 1 N m = 1 N E l E m exp [ i ( G l m ) r ] } ,
F ( u , v ) = 1 N 2 u = 0 N 1 v = 0 N 1 f ( x , y ) exp ( 2 π j u x + v y N ) = 1 N 2 u = 0 N 1 v = 0 N 1 I ( r ) exp ( 2 π j u r cos θ + v r sin θ N ) ,

Metrics