Abstract

We study the combined polarization decoherence experienced by entangled photons due to time- and space-related dephasing processes in a metal hole array. These processes are implemented when the entangled photons are sent through a birefringent delay and are focused on the array. In particular, we demonstrate that compensating the temporal separation of the two polarizations after passage through the array can only partly recover the original coherence. This, surprisingly, shows a coupling between the temporal and spatial decoherence channels; we ascribe this coupling to transverse propagation of surface plasmons.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-190 (2002).
    [CrossRef]
  2. A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, "Quantum cryptography using femtosecond-pulsed parametric down-conversion," Phys. Rev. A 60, R2622-R2625 (1999).
    [CrossRef]
  3. A. V. Sergienko and G. S. Jaeger, "Quantum information processing and precise optical measurement with entangled-photon pairs," Contemp. Phys. 44, 341-356 (2003).
    [CrossRef]
  4. A. Migdall, "Correlated-photon metrology without absolute standards," Phys. Today January, 41-46 (1999).
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  7. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  8. S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. Soc. Am. A 4, S83-S87 (2002).
  9. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
    [CrossRef]
  10. C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
    [CrossRef]
  11. E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
    [CrossRef] [PubMed]
  12. E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," J. Opt. Soc. Am. B 20, 1927-1931 (2003).
    [CrossRef]
  13. E. Altewischer, C. Genet, M. P. van Exter, P. F. A. Alkemade, A. van Zuuk, and E. W. J. M. van der Drift, "Polarization tomography of metallic nanohole arrays," Opt. Lett. 30, 90-92 (2005).
    [CrossRef] [PubMed]
  14. E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Analytic model of optical depolarization in square and hexagonal nanohole arrays," J. Opt. Soc. Am. B 22, 1731-1736 (2005).
    [CrossRef]
  15. F. Le Roy-Brehonnet and B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
    [CrossRef]
  16. P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, "Experimental entanglement distillation and 'hidden' non-locality," Nature 409, 1014-1017 (2001).
    [CrossRef] [PubMed]
  17. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  18. P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, "Increased polarization-entangled photon flux via thinner crystals," Phys. Rev. A 70, 043818 (2004).
    [CrossRef]
  19. Y. H. Kim, "Quantum interference with beamlike type-II spontaneous parametric down-conversion," Phys. Rev. A 68, 013804 (2003).
    [CrossRef]
  20. E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, "Theory of plasmon-assisted transmission of entangled photons," Phys. Rev. Lett. 92, 236801 (2004).
    [CrossRef] [PubMed]
  21. A. Aiello and J. P. Woerdman, "Intrinsic entanglement degradation by multimode detection," Phys. Rev. A 70, 023808 (2004).
    [CrossRef]

2005 (2)

2004 (3)

P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, "Increased polarization-entangled photon flux via thinner crystals," Phys. Rev. A 70, 043818 (2004).
[CrossRef]

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, "Theory of plasmon-assisted transmission of entangled photons," Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef] [PubMed]

A. Aiello and J. P. Woerdman, "Intrinsic entanglement degradation by multimode detection," Phys. Rev. A 70, 023808 (2004).
[CrossRef]

2003 (3)

Y. H. Kim, "Quantum interference with beamlike type-II spontaneous parametric down-conversion," Phys. Rev. A 68, 013804 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," J. Opt. Soc. Am. B 20, 1927-1931 (2003).
[CrossRef]

A. V. Sergienko and G. S. Jaeger, "Quantum information processing and precise optical measurement with entangled-photon pairs," Contemp. Phys. 44, 341-356 (2003).
[CrossRef]

2002 (3)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-190 (2002).
[CrossRef]

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. Soc. Am. A 4, S83-S87 (2002).

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
[CrossRef] [PubMed]

2001 (2)

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, "Experimental entanglement distillation and 'hidden' non-locality," Nature 409, 1014-1017 (2001).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

2000 (2)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

1999 (1)

A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, "Quantum cryptography using femtosecond-pulsed parametric down-conversion," Phys. Rev. A 60, R2622-R2625 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

1997 (1)

F. Le Roy-Brehonnet and B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Aiello, A.

A. Aiello and J. P. Woerdman, "Intrinsic entanglement degradation by multimode detection," Phys. Rev. A 70, 023808 (2004).
[CrossRef]

Alkemade, P. F. A.

Altewischer, E.

Atatüre, M.

A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, "Quantum cryptography using femtosecond-pulsed parametric down-conversion," Phys. Rev. A 60, R2622-R2625 (1999).
[CrossRef]

Barraza-Lopez, S.

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, "Experimental entanglement distillation and 'hidden' non-locality," Nature 409, 1014-1017 (2001).
[CrossRef] [PubMed]

Cirac, J. I.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, "Theory of plasmon-assisted transmission of entangled photons," Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef] [PubMed]

Duch, A. C.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Enoch, S.

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. Soc. Am. A 4, S83-S87 (2002).

Erni, D.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, "Theory of plasmon-assisted transmission of entangled photons," Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef] [PubMed]

Feldmann, J.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

García-Vidal, F. J.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, "Theory of plasmon-assisted transmission of entangled photons," Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Genet, C.

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-190 (2002).
[CrossRef]

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, "Experimental entanglement distillation and 'hidden' non-locality," Nature 409, 1014-1017 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Jaeger, G.

A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, "Quantum cryptography using femtosecond-pulsed parametric down-conversion," Phys. Rev. A 60, R2622-R2625 (1999).
[CrossRef]

Jaeger, G. S.

A. V. Sergienko and G. S. Jaeger, "Quantum information processing and precise optical measurement with entangled-photon pairs," Contemp. Phys. 44, 341-356 (2003).
[CrossRef]

Kim, Y. H.

Y. H. Kim, "Quantum interference with beamlike type-II spontaneous parametric down-conversion," Phys. Rev. A 68, 013804 (2003).
[CrossRef]

Koch, M.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, "Experimental entanglement distillation and 'hidden' non-locality," Nature 409, 1014-1017 (2001).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Le Jeune, B.

F. Le Roy-Brehonnet and B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
[CrossRef]

Le Roy-Brehonnet, F.

F. Le Roy-Brehonnet and B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
[CrossRef]

Lee, P. S. K.

P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, "Increased polarization-entangled photon flux via thinner crystals," Phys. Rev. A 70, 043818 (2004).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Martín-Moreno, L.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, "Theory of plasmon-assisted transmission of entangled photons," Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Migdall, A.

A. Migdall, "Correlated-photon metrology without absolute standards," Phys. Today January, 41-46 (1999).

Moreno, E.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, "Theory of plasmon-assisted transmission of entangled photons," Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef] [PubMed]

Neviere, M.

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. Soc. Am. A 4, S83-S87 (2002).

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Popov, E.

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. Soc. Am. A 4, S83-S87 (2002).

Reinisch, R.

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. Soc. Am. A 4, S83-S87 (2002).

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-190 (2002).
[CrossRef]

Saleh, B. E. A.

A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, "Quantum cryptography using femtosecond-pulsed parametric down-conversion," Phys. Rev. A 60, R2622-R2625 (1999).
[CrossRef]

Sergienko, A. V.

A. V. Sergienko and G. S. Jaeger, "Quantum information processing and precise optical measurement with entangled-photon pairs," Contemp. Phys. 44, 341-356 (2003).
[CrossRef]

A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, "Quantum cryptography using femtosecond-pulsed parametric down-conversion," Phys. Rev. A 60, R2622-R2625 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Stefanov, A.

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, "Experimental entanglement distillation and 'hidden' non-locality," Nature 409, 1014-1017 (2001).
[CrossRef] [PubMed]

Steininger, G.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Teich, M. C.

A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, "Quantum cryptography using femtosecond-pulsed parametric down-conversion," Phys. Rev. A 60, R2622-R2625 (1999).
[CrossRef]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-190 (2002).
[CrossRef]

van der Drift, E. W. J. M.

van Exter, M. P.

van Zuuk, A.

von Plessen, G.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Walton, Z.

A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, "Quantum cryptography using femtosecond-pulsed parametric down-conversion," Phys. Rev. A 60, R2622-R2625 (1999).
[CrossRef]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Woerdman, J. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Analytic model of optical depolarization in square and hexagonal nanohole arrays," J. Opt. Soc. Am. B 22, 1731-1736 (2005).
[CrossRef]

P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, "Increased polarization-entangled photon flux via thinner crystals," Phys. Rev. A 70, 043818 (2004).
[CrossRef]

A. Aiello and J. P. Woerdman, "Intrinsic entanglement degradation by multimode detection," Phys. Rev. A 70, 023808 (2004).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Polarization analysis of propagating surface plasmons in a subwavelength hole array," J. Opt. Soc. Am. B 20, 1927-1931 (2003).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-190 (2002).
[CrossRef]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Contemp. Phys. (1)

A. V. Sergienko and G. S. Jaeger, "Quantum information processing and precise optical measurement with entangled-photon pairs," Contemp. Phys. 44, 341-356 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. Soc. Am. A 4, S83-S87 (2002).

J. Opt. Soc. Am. B (2)

Nature (3)

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, "Experimental entanglement distillation and 'hidden' non-locality," Nature 409, 1014-1017 (2001).
[CrossRef] [PubMed]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons," Nature 418, 304-306 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (4)

A. V. Sergienko, M. Atatüre, Z. Walton, G. Jaeger, B. E. A. Saleh, and M. C. Teich, "Quantum cryptography using femtosecond-pulsed parametric down-conversion," Phys. Rev. A 60, R2622-R2625 (1999).
[CrossRef]

P. S. K. Lee, M. P. van Exter, and J. P. Woerdman, "Increased polarization-entangled photon flux via thinner crystals," Phys. Rev. A 70, 043818 (2004).
[CrossRef]

Y. H. Kim, "Quantum interference with beamlike type-II spontaneous parametric down-conversion," Phys. Rev. A 68, 013804 (2003).
[CrossRef]

A. Aiello and J. P. Woerdman, "Intrinsic entanglement degradation by multimode detection," Phys. Rev. A 70, 023808 (2004).
[CrossRef]

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, "Theory of plasmon-assisted transmission of entangled photons," Phys. Rev. Lett. 92, 236801 (2004).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

F. Le Roy-Brehonnet and B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-190 (2002).
[CrossRef]

Other (1)

A. Migdall, "Correlated-photon metrology without absolute standards," Phys. Today January, 41-46 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Schematic view of the experimental setup. Light from a cw krypton-ion laser operating at 407 nm is mildly focused (spot size 0.3 mm ) on a 0.25 mm thick BBO crystal. Walk-off effects are compensated for by a half-wave plate (HWP) and two compensating BBO crystals (cc) of 0.13 0.14 mm thickness. The entangled photons pass f = 20 cm collimating lenses L1 and 5 mm diameter apertures before quartz waveplates (WP) and a Soleil–Babinet compensator (SB) create a time delay (TD) between orthogonal polarization components in the upper beam. In this beam, the light propagates through a metal hole array positioned in the focus of the telescope. The inset shows a SEM picture of our hexagonal hole array (scale bar corresponds to 2 μ m ). A reverse time delay (RTD), similar to TD, is applied in some of the experiments. Both polarizers P are fixed at 45° with respect to the BBO axes, and the two beams are focused via interference filters ( 50 nm FWHM) onto single-photon counters SPC (Perkin Elmer SPCM-AQR-14) by f = 2.5 cm lenses (L2). Finally, the output signals of these counters are sent to an electronic circuit that records coincidence counts within a time window of 1.76 ns .

Fig. 2
Fig. 2

(Color online) Transmission spectra of the hexagonal array (solid curve, left axis) and 50 nm FWHM interference filter (dashed curve, right axis).

Fig. 3
Fig. 3

Time-resolved polarization decoherence, measured as the polarization fringe visibility V versus time delay τ, for a hole array positioned in the focus of a telescope of variable numerical aperture NA. The solid curve without markers shows the measurement without hole array as a reference. The horizontal line depicts the zero level.

Fig. 4
Fig. 4

(Color online) Averaged absolute values of V ( τ ) and V ( + τ ) in Fig. 3, plotted on a vertical logarithmic scale as a function of τ . The thicker curve without markers represents the measurement without hole array. The straight solid line is a fit of the exponentially decaying part of the NA = 0.017 curve, from which a decay time τ c = 38 ± 1 fs is obtained.

Fig. 5
Fig. 5

Time-resolved polarization decoherence at NA = 0.053 with variable reverse time delay - τ fix + τ behind the telescope and fixed time delay τ fix = 145 fs in front of telescope (solid dots). The measured polarization fringe visibilities V are plotted as a function of τ. The NA = 0.053 curve in Fig. 3 is also plotted for comparison (open circles). The horizontal line depicts the zero level. The vertical error bars are smaller than the size of the data symbols.

Metrics