Abstract

The optical properties of semiconductor quantum wells embedded in one-dimensional photonic crystal structures are analyzed by a self-consistent solution of Maxwell’s equations and a microscopic many-body theory of the material excitations. For a field mode spectrally below the photonic band edge it is shown that the optical absorption and gain are enhanced, exceeding by more than 1 order of magnitude the values of a homogeneous medium. For the photonic crystal structure inside a microcavity the gain increases superlinearly with the number of wells and for more than five wells exceeds the gain of a corresponding vertical-cavity surface-emitting laser.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transition between different coherent light–matter interaction regimes analyzed by phase-resolved pulse propagation

Tilman Höner zu Siederdissen, Nils C. Nielsen, Jürgen Kuhl, Martin Schaarschmidt, Jens Förstner, Andreas Knorr, Galina Khitrova, Hyatt M. Gibbs, Stephan W. Koch, and Harald Giessen
Opt. Lett. 30(11) 1384-1386 (2005)

Slow light in mass-produced, dispersion-engineered photonic crystal ring resonators

Kathleen McGarvey-Lechable, Tabassom Hamidfar, David Patel, Luhua Xu, David V. Plant, and Pablo Bianucci
Opt. Express 25(4) 3916-3926 (2017)

Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators

Kathleen McGarvey-Lechable and Pablo Bianucci
Opt. Express 22(21) 26032-26041 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription