Abstract

We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8μm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter 300nm, height up to 150 nm on each side of the film). We investigate the LR-SPP transmission through and reflection from the PC structures of different lengths and lattice periods as well as the LR-SPP propagation along line defects of different widths. The reflection measurements indicate a large penetration depth of LR-SPPs (tens of micrometers) into the investigated PC structures. Using a self-consistent description based on the Green’s function formalism, we simulate numerically the LR-SPP transmission through and reflection from finite-size PC structures consisting of finite-size scatterers, as well as the LR-SPP guiding along line defects in these structures. Calculation results are found to be in good agreement with experimental findings, showing, e.g., deep penetration of LR-SPPs in the PC structures and good confinement of the radiation inside the channels. Our results indicate that the multiple LR-SPP scattering, occurring in the investigated PC structures, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [Crossref] [PubMed]
  3. B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
    [Crossref] [PubMed]
  4. I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77, 3877-3880 (1996).
    [Crossref] [PubMed]
  5. J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, "Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures," Opt. Commun. 137, 46-50 (1997).
    [Crossref]
  6. S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78, 2823-2826 (1997).
    [Crossref]
  7. S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plamon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
    [Crossref]
  8. A. Bouhelier, Th. Huser, J. M. Freyland, H.-J. Guntherodt, and D. W. Pohl, "Plasmon transmissivity and reflectivity of narrow grooves in a silver film," J. Microsc. 194, 571-573 (1999).
    [Crossref]
  9. C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
    [Crossref]
  10. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
    [Crossref]
  11. J.-C. Weeber, A. Dereux, and C. Girard, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
    [Crossref]
  12. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
    [Crossref]
  13. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
    [Crossref] [PubMed]
  14. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, "Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface," Opt. Lett. 26, 734-736 (2001).
    [Crossref]
  15. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79, 1076-1078 (2001).
    [Crossref]
  16. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, PhotonicCrystals: Molding the Flow of Light (Princeton U. Press, 1995).
  17. C.M.Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer, 2001).
    [Crossref]
  18. T. F. Krauss and R. M. De La Rue, "Photonic crystals in the optical regime--past, present and future," Prog. Quantum Electron. 23, 51-96 (1999).
    [Crossref]
  19. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, andR. N. Hamm, "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
    [Crossref]
  20. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
    [Crossref] [PubMed]
  21. M. Kretschmann and A. A. Maradudin, "Band structures of two-dimensional surface-plasmon polaritonic crystals," Phys. Rev. B 66, 245408 (2002).
    [Crossref]
  22. S. I. Bozhevolnyi and V. S. Volkov, "Multiple-scattering dipole approach to modeling of surface plasmon polariton band gap structures," Opt. Commun. 198, 241-245 (2001).
    [Crossref]
  23. T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67, 165405 (2003).
    [Crossref]
  24. F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, "Waveguiding through a two-dimensional metallic photonic crystal," J. Microsc. 213, 144-148 (2004).
    [Crossref] [PubMed]
  25. B. J. Eggleton and Yu. A. Vlasov, "Introduction to focus issue: photonic crystals and holey fibers," Opt. Express 12, 1476 (2004).
    [Crossref]
  26. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. E. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
    [Crossref]
  27. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
    [Crossref]
  28. T. Søndergaard, J. Arentoft, and M. Kristensen, "Theoretical analysis of finite-height semiconductor-on-insulator-based planar photonic crystal waveguides," J. Lightwave Technol. 20, 1619-1626 (2002).
    [Crossref]
  29. C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguide," Photonics Nanostruct. Fundam. Appl. 1, 1-13 (2003).
    [Crossref]
  30. M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
    [Crossref]
  31. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, K. Takahashi, and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
    [Crossref]
  32. S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
    [Crossref]
  33. J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. H. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides," Electron. Lett. 38, 274-275 (2002).
    [Crossref]
  34. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
    [Crossref] [PubMed]
  35. Yu. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [Crossref] [PubMed]
  36. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
    [Crossref]
  37. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
    [Crossref]
  38. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
    [Crossref]
  39. L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," Appl. Phys. Lett. 81, 1798-1806 (1997).
  40. T. Søndergaard and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by a small particle placed near a metal surface: an analytical study," Phys. Rev. B 69, 45422 (2004).
    [Crossref]
  41. T. Søndergaard and B. Tromborg, "Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures," Phys. Rev. B 66, 155309 (2002).
    [Crossref]

2004 (5)

2003 (4)

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[Crossref]

T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67, 165405 (2003).
[Crossref]

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguide," Photonics Nanostruct. Fundam. Appl. 1, 1-13 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[Crossref] [PubMed]

2002 (7)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[Crossref]

M. Kretschmann and A. A. Maradudin, "Band structures of two-dimensional surface-plasmon polaritonic crystals," Phys. Rev. B 66, 245408 (2002).
[Crossref]

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[Crossref]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
[Crossref]

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. H. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides," Electron. Lett. 38, 274-275 (2002).
[Crossref]

T. Søndergaard, J. Arentoft, and M. Kristensen, "Theoretical analysis of finite-height semiconductor-on-insulator-based planar photonic crystal waveguides," J. Lightwave Technol. 20, 1619-1626 (2002).
[Crossref]

T. Søndergaard and B. Tromborg, "Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures," Phys. Rev. B 66, 155309 (2002).
[Crossref]

2001 (6)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, K. Takahashi, and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[Crossref]

S. I. Bozhevolnyi and V. S. Volkov, "Multiple-scattering dipole approach to modeling of surface plasmon polariton band gap structures," Opt. Commun. 198, 241-245 (2001).
[Crossref]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[Crossref]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, "Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface," Opt. Lett. 26, 734-736 (2001).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79, 1076-1078 (2001).
[Crossref]

2000 (3)

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[Crossref]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[Crossref]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
[Crossref]

1999 (3)

T. F. Krauss and R. M. De La Rue, "Photonic crystals in the optical regime--past, present and future," Prog. Quantum Electron. 23, 51-96 (1999).
[Crossref]

J.-C. Weeber, A. Dereux, and C. Girard, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[Crossref]

A. Bouhelier, Th. Huser, J. M. Freyland, H.-J. Guntherodt, and D. W. Pohl, "Plasmon transmissivity and reflectivity of narrow grooves in a silver film," J. Microsc. 194, 571-573 (1999).
[Crossref]

1998 (1)

S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plamon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
[Crossref]

1997 (3)

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, "Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures," Opt. Commun. 137, 46-50 (1997).
[Crossref]

S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78, 2823-2826 (1997).
[Crossref]

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," Appl. Phys. Lett. 81, 1798-1806 (1997).

1996 (3)

B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[Crossref] [PubMed]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77, 3877-3880 (1996).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[Crossref] [PubMed]

1981 (1)

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[Crossref]

1968 (1)

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, andR. N. Hamm, "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[Crossref]

Al Naboulsi, M.

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, "Waveguiding through a two-dimensional metallic photonic crystal," J. Microsc. 213, 144-148 (2004).
[Crossref] [PubMed]

Andreani, L. C.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguide," Photonics Nanostruct. Fundam. Appl. 1, 1-13 (2003).
[Crossref]

Arakawa, E. T.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, andR. N. Hamm, "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[Crossref]

Arentoft, J.

T. Søndergaard, J. Arentoft, and M. Kristensen, "Theoretical analysis of finite-height semiconductor-on-insulator-based planar photonic crystal waveguides," J. Lightwave Technol. 20, 1619-1626 (2002).
[Crossref]

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. H. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides," Electron. Lett. 38, 274-275 (2002).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[Crossref]

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, "Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures," Opt. Commun. 137, 46-50 (1997).
[Crossref]

Baida, F. I.

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, "Waveguiding through a two-dimensional metallic photonic crystal," J. Microsc. 213, 144-148 (2004).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[Crossref] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[Crossref] [PubMed]

Berini, P.

Berolo, E.

Bielefeld, H.

B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[Crossref] [PubMed]

Boltasseva, A.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. H. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides," Electron. Lett. 38, 274-275 (2002).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79, 1076-1078 (2001).
[Crossref]

Bouhelier, A.

A. Bouhelier, Th. Huser, J. M. Freyland, H.-J. Guntherodt, and D. W. Pohl, "Plasmon transmissivity and reflectivity of narrow grooves in a silver film," J. Microsc. 194, 571-573 (1999).
[Crossref]

Bozhevolnyi, S. I.

T. Søndergaard and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by a small particle placed near a metal surface: an analytical study," Phys. Rev. B 69, 45422 (2004).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[Crossref]

T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67, 165405 (2003).
[Crossref]

S. I. Bozhevolnyi and V. S. Volkov, "Multiple-scattering dipole approach to modeling of surface plasmon polariton band gap structures," Opt. Commun. 198, 241-245 (2001).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79, 1076-1078 (2001).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, "Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface," Opt. Lett. 26, 734-736 (2001).
[Crossref]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[Crossref] [PubMed]

S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plamon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
[Crossref]

S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78, 2823-2826 (1997).
[Crossref]

Busch, K.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. E. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[Crossref]

Charbonneau, R.

Chutinan, A.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
[Crossref]

Coello, V.

S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plamon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
[Crossref]

Cowan, J. J.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, andR. N. Hamm, "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[Crossref]

Davis, C. C.

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77, 3877-3880 (1996).
[Crossref] [PubMed]

De La Rue, R. M.

T. F. Krauss and R. M. De La Rue, "Photonic crystals in the optical regime--past, present and future," Prog. Quantum Electron. 23, 51-96 (1999).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[Crossref] [PubMed]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[Crossref]

J.-C. Weeber, A. Dereux, and C. Girard, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[Crossref]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[Crossref]

Duch, A. C.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[Crossref] [PubMed]

Eggleton, B. J.

Erland, J.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, "Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface," Opt. Lett. 26, 734-736 (2001).
[Crossref]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[Crossref] [PubMed]

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[Crossref]

Feldmann, J.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[Crossref]

Föll, H. E.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. E. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[Crossref]

Frandsen, L. H.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. H. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides," Electron. Lett. 38, 274-275 (2002).
[Crossref]

Freyland, J. M.

A. Bouhelier, Th. Huser, J. M. Freyland, H.-J. Guntherodt, and D. W. Pohl, "Plasmon transmissivity and reflectivity of narrow grooves in a silver film," J. Microsc. 194, 571-573 (1999).
[Crossref]

Girard, C.

J.-C. Weeber, A. Dereux, and C. Girard, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[Crossref]

Gösele, U.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguide," Photonics Nanostruct. Fundam. Appl. 1, 1-13 (2003).
[Crossref]

Goudonnet, J.-P.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[Crossref]

Guizal, B.

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, "Waveguiding through a two-dimensional metallic photonic crystal," J. Microsc. 213, 144-148 (2004).
[Crossref] [PubMed]

Guntherodt, H.-J.

A. Bouhelier, Th. Huser, J. M. Freyland, H.-J. Guntherodt, and D. W. Pohl, "Plasmon transmissivity and reflectivity of narrow grooves in a silver film," J. Microsc. 194, 571-573 (1999).
[Crossref]

Hamm, R. N.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, andR. N. Hamm, "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[Crossref]

Hecht, B.

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," Appl. Phys. Lett. 81, 1798-1806 (1997).

B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[Crossref] [PubMed]

Hermann, C.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguide," Photonics Nanostruct. Fundam. Appl. 1, 1-13 (2003).
[Crossref]

Hess, O.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguide," Photonics Nanostruct. Fundam. Appl. 1, 1-13 (2003).
[Crossref]

Huser, Th.

A. Bouhelier, Th. Huser, J. M. Freyland, H.-J. Guntherodt, and D. W. Pohl, "Plasmon transmissivity and reflectivity of narrow grooves in a silver film," J. Microsc. 194, 571-573 (1999).
[Crossref]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[Crossref] [PubMed]

Imada, M.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
[Crossref]

Inouye, Y.

B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[Crossref] [PubMed]

Jamois, C.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguide," Photonics Nanostruct. Fundam. Appl. 1, 1-13 (2003).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, PhotonicCrystals: Molding the Flow of Light (Princeton U. Press, 1995).

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[Crossref]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[Crossref] [PubMed]

Koch, M.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[Crossref]

Krauss, T. F.

T. F. Krauss and R. M. De La Rue, "Photonic crystals in the optical regime--past, present and future," Prog. Quantum Electron. 23, 51-96 (1999).
[Crossref]

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[Crossref]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[Crossref]

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, "Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures," Opt. Commun. 137, 46-50 (1997).
[Crossref]

Kretschmann, M.

M. Kretschmann and A. A. Maradudin, "Band structures of two-dimensional surface-plasmon polaritonic crystals," Phys. Rev. B 66, 245408 (2002).
[Crossref]

Kristensen, M.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. H. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides," Electron. Lett. 38, 274-275 (2002).
[Crossref]

T. Søndergaard, J. Arentoft, and M. Kristensen, "Theoretical analysis of finite-height semiconductor-on-insulator-based planar photonic crystal waveguides," J. Lightwave Technol. 20, 1619-1626 (2002).
[Crossref]

Kuramochi, E.

Lacroute, Y.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[Crossref]

Lamprecht, B.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[Crossref]

Leitner, A.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[Crossref]

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, "Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures," Opt. Commun. 137, 46-50 (1997).
[Crossref]

Leosson, K.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, "Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface," Opt. Lett. 26, 734-736 (2001).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79, 1076-1078 (2001).
[Crossref]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[Crossref] [PubMed]

Lisicka-Skrzek, E.

Lölkes, S.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. E. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[Crossref]

Maradudin, A. A.

M. Kretschmann and A. A. Maradudin, "Band structures of two-dimensional surface-plasmon polaritonic crystals," Phys. Rev. B 66, 245408 (2002).
[Crossref]

Mazzoni, D. L.

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77, 3877-3880 (1996).
[Crossref] [PubMed]

McNab, S. J.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, PhotonicCrystals: Molding the Flow of Light (Princeton U. Press, 1995).

Mitsugi, S.

Mochizuki, M.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
[Crossref]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[Crossref]

Noda, S.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
[Crossref]

Notomi, M.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
[Crossref] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, K. Takahashi, and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[Crossref]

Novotny, L.

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," Appl. Phys. Lett. 81, 1798-1806 (1997).

B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[Crossref] [PubMed]

Ogawa, S.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
[Crossref]

Okano, M.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
[Crossref]

Pagani, Y.

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, "Waveguiding through a two-dimensional metallic photonic crystal," J. Microsc. 213, 144-148 (2004).
[Crossref] [PubMed]

Pohl, D. W.

A. Bouhelier, Th. Huser, J. M. Freyland, H.-J. Guntherodt, and D. W. Pohl, "Plasmon transmissivity and reflectivity of narrow grooves in a silver film," J. Microsc. 194, 571-573 (1999).
[Crossref]

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," Appl. Phys. Lett. 81, 1798-1806 (1997).

B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[Crossref] [PubMed]

Pudonin, F. A.

S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78, 2823-2826 (1997).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons (Springer, 1988).

Ritchie, R. H.

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, andR. N. Hamm, "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[Crossref]

Ryu, H.-Y.

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[Crossref]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[Crossref] [PubMed]

Sarid, D.

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[Crossref]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[Crossref]

Shinya, A.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004).
[Crossref] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, K. Takahashi, and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[Crossref]

Skovgaard, P. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[Crossref] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77, 3877-3880 (1996).
[Crossref] [PubMed]

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by a small particle placed near a metal surface: an analytical study," Phys. Rev. B 69, 45422 (2004).
[Crossref]

T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67, 165405 (2003).
[Crossref]

T. Søndergaard and B. Tromborg, "Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures," Phys. Rev. B 66, 155309 (2002).
[Crossref]

T. Søndergaard, J. Arentoft, and M. Kristensen, "Theoretical analysis of finite-height semiconductor-on-insulator-based planar photonic crystal waveguides," J. Lightwave Technol. 20, 1619-1626 (2002).
[Crossref]

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. H. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides," Electron. Lett. 38, 274-275 (2002).
[Crossref]

Sonnichsen, C.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[Crossref]

Steininger, G.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[Crossref]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, K. Takahashi, and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[Crossref]

Takahashi, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, K. Takahashi, and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[Crossref]

Thorhauge, M.

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. H. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides," Electron. Lett. 38, 274-275 (2002).
[Crossref]

Tokushima, M.

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[Crossref]

Tromborg, B.

T. Søndergaard and B. Tromborg, "Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures," Phys. Rev. B 66, 155309 (2002).
[Crossref]

Van Labeke, D.

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, "Waveguiding through a two-dimensional metallic photonic crystal," J. Microsc. 213, 144-148 (2004).
[Crossref] [PubMed]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[Crossref]

Vlasov, Yu. A.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, "Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface," Opt. Lett. 26, 734-736 (2001).
[Crossref]

S. I. Bozhevolnyi and V. S. Volkov, "Multiple-scattering dipole approach to modeling of surface plasmon polariton band gap structures," Opt. Commun. 198, 241-245 (2001).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79, 1076-1078 (2001).
[Crossref]

von Plessen, G.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[Crossref]

Weeber, J.-C.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[Crossref]

J.-C. Weeber, A. Dereux, and C. Girard, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[Crossref]

Wehrspohn, R. B.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguide," Photonics Nanostruct. Fundam. Appl. 1, 1-13 (2003).
[Crossref]

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. E. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, PhotonicCrystals: Molding the Flow of Light (Princeton U. Press, 1995).

Wolf, R.

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, "Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures," Opt. Commun. 137, 46-50 (1997).
[Crossref]

Yamada, H.

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[Crossref]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, K. Takahashi, and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[Crossref]

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, K. Takahashi, and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[Crossref]

Appl. Phys. Lett. (5)

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, "Bend loss in surface plasmon polariton band-gap structures," Appl. Phys. Lett. 79, 1076-1078 (2001).
[Crossref]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[Crossref]

L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," Appl. Phys. Lett. 81, 1798-1806 (1997).

Electron. Lett. (2)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, K. Takahashi, and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[Crossref]

J. Arentoft, T. Søndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. H. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides," Electron. Lett. 38, 274-275 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, "Semiconductor three-dimensional and two-dimensional photonic crystals and devices," IEEE J. Quantum Electron. 38, 726-735 (2002).
[Crossref]

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Microsc. (2)

F. I. Baida, D. Van Labeke, Y. Pagani, B. Guizal, and M. Al Naboulsi, "Waveguiding through a two-dimensional metallic photonic crystal," J. Microsc. 213, 144-148 (2004).
[Crossref] [PubMed]

A. Bouhelier, Th. Huser, J. M. Freyland, H.-J. Guntherodt, and D. W. Pohl, "Plasmon transmissivity and reflectivity of narrow grooves in a silver film," J. Microsc. 194, 571-573 (1999).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

J. R. Krenn, R. Wolf, A. Leitner, and F. R. Aussenegg, "Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures," Opt. Commun. 137, 46-50 (1997).
[Crossref]

S. I. Bozhevolnyi and V. S. Volkov, "Multiple-scattering dipole approach to modeling of surface plasmon polariton band gap structures," Opt. Commun. 198, 241-245 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Photonics Nanostruct. Fundam. Appl. (1)

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, "Silicon-based two-dimensional photonic crystal waveguide," Photonics Nanostruct. Fundam. Appl. 1, 1-13 (2003).
[Crossref]

Phys. Rev. B (8)

T. Søndergaard and S. I. Bozhevolnyi, "Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions," Phys. Rev. B 67, 165405 (2003).
[Crossref]

M. Kretschmann and A. A. Maradudin, "Band structures of two-dimensional surface-plasmon polaritonic crystals," Phys. Rev. B 66, 245408 (2002).
[Crossref]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212-8222 (2000).
[Crossref]

S. I. Bozhevolnyi and V. Coello, "Elastic scattering of surface plamon polaritons: modeling and experiment," Phys. Rev. B 58, 10899-10910 (1998).
[Crossref]

J.-C. Weeber, A. Dereux, and C. Girard, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[Crossref]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001).
[Crossref]

T. Søndergaard and S. I. Bozhevolnyi, "Surface plasmon polariton scattering by a small particle placed near a metal surface: an analytical study," Phys. Rev. B 69, 45422 (2004).
[Crossref]

T. Søndergaard and B. Tromborg, "Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures," Phys. Rev. B 66, 155309 (2002).
[Crossref]

Phys. Rev. Lett. (7)

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001).
[Crossref] [PubMed]

S. I. Bozhevolnyi and F. A. Pudonin, "Two-dimensional micro-optics of surface plasmons," Phys. Rev. Lett. 78, 2823-2826 (1997).
[Crossref]

B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering, and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996).
[Crossref] [PubMed]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, "Imaging of surface plasmon scattering by lithographically created individual surface defects," Phys. Rev. Lett. 77, 3877-3880 (1996).
[Crossref] [PubMed]

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, andR. N. Hamm, "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
[Crossref]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[Crossref] [PubMed]

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[Crossref]

Prog. Quantum Electron. (1)

T. F. Krauss and R. M. De La Rue, "Photonic crystals in the optical regime--past, present and future," Prog. Quantum Electron. 23, 51-96 (1999).
[Crossref]

Other (4)

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. E. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, PhotonicCrystals: Molding the Flow of Light (Princeton U. Press, 1995).

C.M.Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer, 2001).
[Crossref]

H. Raether, Surface Plasmons (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Scanning electron microscope pictures of step-by-step processing of PC structures: (a) pattern in the electron-beam resist deposited on the polymer (BCB) layer, (b) holes in BCB made by reactive-ion etching by using the resist as a mask (the resist is not removed further away on the picture) and covered with a thick gold film, and (c) and (d) surface after lift-off [(c) gold bumps at and holes in BCB—the latter are in places where bumps have fallen off during lift-off; (d) a successfully fabricated PC structure] but before deposition of a thin gold layer supporting LR-SPPs and the top BCB layer.

Fig. 2
Fig. 2

(a) Detail of the mask design showing an 8 μ m wide stripe waveguide entering a PC area in the Γ K direction of the 570 nm period triangular lattice together with (b) the optical microscope image showing the top view of a 12 μ m long and 50 μ m wide PC block together with the 8 μ m wide stripe waveguide. Lower figures show the same top view (without external illumination) when the LR-SPP is excited (c) at the resonance wavelength of 1512 nm and (d) at 1600 nm.

Fig. 3
Fig. 3

Typical transmission spectra for 570 nm period PC blocks of different lengths for (a) Γ K and (b) Γ M orientations. Total bump height is 300 nm.

Fig. 4
Fig. 4

Transmission spectra through 24 μ m long PC blocks of Γ K orientation having different lattice constants Λ together with the positions of the transmission peaks estimated from the Bragg grating arguments [Eq. (1)]. Total bump height is 190 nm.

Fig. 5
Fig. 5

Typical reflection spectra for 570 nm period PC blocks of different lengths for (a) Γ K and (b) Γ M orientations. Total bump height is 300 nm.

Fig. 6
Fig. 6

Reflection spectra from 190 μ m long PC blocks of Γ K orientation having different lattice constants Λ together with the positions of the reflection peaks estimated from the Bragg grating arguments [Eq. (1)]. Total bump height is 190 nm.

Fig. 7
Fig. 7

Dependence of the product between the reflection peak width and the PC block length on the block length for different lattices and total bump heights.

Fig. 8
Fig. 8

Optical microscope images showing the top view of a 240 μ m long and 4.5 μ m wide channel in the Γ K direction of 570 nm period PC structure together with an 8 μ m wide stripe waveguide: (a) with external white-light illumination and (b) with the LR-SPP excitation (without external illumination).

Fig. 9
Fig. 9

Guided LR-SPP modes at the output of (a) an 8 μ m wide stripe waveguide and channels in the Γ M direction are (b) 8, (c) 6, and (d) 4 μ m wide.

Fig. 10
Fig. 10

Typical transmission spectra for channels of different lengths for (a) Γ K orientation (width 4.5 μ m ) and (b) Γ M orientation (width 4 μ m ) of 570 nm period PC structures. Total bump height is 300 nm.

Fig. 11
Fig. 11

Typical reflection spectra from 3.4 μ m wide channels of different lengths (lattice constant Λ = 570 nm , Γ K orientation). Total bump height is 300 nm.

Fig. 12
Fig. 12

Transmission spectra through 300 μ m long and 4.5 μ m wide channels in (a) Γ K and (b) Γ M directions of PC structures with different lattice constants Λ together with the peak positions estimated from the Bragg grating arguments [Eqs. (1, 2)]. Total bump height is 175 nm.

Fig. 13
Fig. 13

Dependence of (a) propagation and (b) coupling losses on the channel width for different lattice constants Λ ( Γ M orientation). Total bump height is 300 nm.

Fig. 14
Fig. 14

Calculated (a) transmission and (b) reflection for a Gaussian LR-SPP incident on a Γ K -oriented array of 30 × 30 gold scatterers arranged on a triangular lattice on both sides of a 15 nm thick gold film for three lattice constants Λ. The gold film and particles are surrounded by a material with refractive index 1.5309 (BCB).

Fig. 15
Fig. 15

(a) Electric field intensity distribution calculated 300 nm above the metal film surface for a LR-SPP incident on a 570 nm period Γ K -oriented array of 30 × 30 gold scatterers together with (b) its cross section. The wavelength is 1512 nm.

Fig. 16
Fig. 16

Configuration is as in Fig. 15. The wavelength is 1600 nm.

Fig. 17
Fig. 17

Calculated transmission and reflection for a Gaussian LR-SPP incident on a 570 nm period Γ M -oriented array of 34 × 26 gold scatterers.

Fig. 18
Fig. 18

Electric field intensity distribution calculated 300 nm above the metal film surface for a LR-SPP incident on a 570 nm period Γ M -oriented array of 30 × 30 gold scatterers. The wavelength is 1310 nm.

Fig. 19
Fig. 19

Calculated transmission and reflection for a Gaussian LR-SPP incident on waveguides created by our removing (a) five (width of 5) to nine (width of 9) rows of scatterers in a Γ K -oriented array and (b) three (width of 3) to seven (width of 7) rows of scatterers in a Γ M -oriented array of 30 × 30 gold scatterers. The lattice constant is Λ = 570 nm .

Fig. 20
Fig. 20

Calculated field intensity 300 nm above the metal film for a Gaussian LR-SPP incident on a waveguide created by our removing (a) and (b) five or (c) nine rows of scatterers in a 570 nm period Γ K -oriented array of 30 × 30 gold scatterers. The wavelengths are (a) 1512 nm and (b) and (c) 1650 nm.

Fig. 21
Fig. 21

Calculated field intensity 300 nm above the metal film for a Gaussian LR-SPP incident on a waveguide created by our removing (a) three or (b) seven rows of scatterers in a 570 nm period Γ M -oriented array of 30 × 30 gold scatterers. The wavelength is 1650 nm.

Fig. 22
Fig. 22

Cross section of field intensity through the center of the waveguides for the configurations shown correspondingly in Figs. 20a, 21b. Cross sections have been chosen with the maximum field in the center of the waveguide. The vertical bars show the position of the first row of scatterers on each side of the waveguide region.

Fig. 23
Fig. 23

Microscope images of the fabricated Y splitters with 20 μ m wide arm separation when the LR-SPP stripe mode at 1550 nm is excited at its input: top view for (a) Γ M and (b) Γ K orientations and (c) the output intensity distribution for Γ M orientation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ max = 3 n Λ ,
λ max = 1.5 n Λ ,
E ( r ) = E 0 ( r ) + G ( r , r ) k 0 2 [ ϵ ( r ) ϵ ref ( r ) ] E ( r ) d 3 r ,

Metrics