Abstract

We demonstrate a new waveguiding structure for terahertz (THz) radiation in which broadband THz pulses are confined and guided along a bare metal wire. The propagation of THz pulses on such a waveguide is characterized with a fiber-coupled terahertz time-domain spectroscopy system. Free-space THz radiation is coupled onto the waveguide at different positions along the wire, and spatially resolved detection of the electric field of the guided wave is performed at the end of the wire. This waveguide exhibits the lowest attenuation of any waveguide for broadband THz pulses reported so far because of the minimal exposed metallic surface area. It also supports propagation of broadband radiation with negligible group-velocity dispersion, making it especially suitable for use in THz sensing and diagnostic systems. In addition, the structural simplicity lends itself naturally to the facile manipulation of the guided pulses, including coupling, directing, and beam splitting. These results can be described in terms of a model developed by Sommerfeld for waves propagating along the surface of a cylindrical conductor.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.Mittleman, ed., Sensing with Terahertz Radiation (Springer-Verlag, 2002).
  2. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996).
    [CrossRef] [PubMed]
  3. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
    [CrossRef] [PubMed]
  4. D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
    [CrossRef] [PubMed]
  5. K. Kawase, Y. Ogawa, and Y. Watanabe, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).
    [CrossRef] [PubMed]
  6. S. Wang and X.-C. Zhang, "Pulsed terahertz tomography," J. Phys. D 37, R1-R36 (2004).
    [CrossRef]
  7. P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-260 (1988).
    [CrossRef]
  8. M. van Exter and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
    [CrossRef]
  9. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, "Generation and detection of terahertz pulses from biased semiconductor antennas," J. Opt. Soc. Am. B 13, 2424-2436 (1996).
    [CrossRef]
  10. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," IEEE J. Sel. Top. Quantum Electron. 2, 679-692 (1996).
    [CrossRef]
  11. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
    [CrossRef]
  12. J. Zhang and D. Grischkowsky, "Waveguide terahertz time-domain spectroscopy of nanometer water layers," Opt. Lett. 29, 1617-1619 (2004).
    [CrossRef] [PubMed]
  13. R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of THz radiation through submillimeter-diameter circular waveguides," Opt. Lett. 24, 1431-1433 (1999).
    [CrossRef]
  14. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004).
    [CrossRef] [PubMed]
  15. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
    [CrossRef]
  16. S. P. Jamison, R. W. McGown, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
    [CrossRef]
  17. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
    [CrossRef]
  18. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. Part 1 43, L317-L319 (2004).
    [CrossRef]
  19. R. Mendis and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001).
    [CrossRef]
  20. R. Mendis and D. Grischkowsky, "THz interconnect with low loss and low group velocity dispersion," IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
    [CrossRef]
  21. S. Coleman and D. Grischkowsky, "A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics," Appl. Phys. Lett. 83, 3656-3658 (2003).
    [CrossRef]
  22. N. Marcuvitz, Waveguide Handbook, Massachusetts Institute of Technology Radiation Laboratory Series (McGraw-Hill, 1951).
  23. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  24. G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
    [CrossRef]
  25. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  26. B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
    [CrossRef]
  27. K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
    [CrossRef]
  28. K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
    [CrossRef]
  29. J. V. Rudd, D. Zimdars, and M. Warmuth, "Compact fiber-pigtailed terahertz imaging system," in Commercial and Biomedical Applications of Ultrafast Lasers II, J.Neev and M.K.Reed, eds., Proc. SPIE 3934, 27-35 (2000).
  30. Y. Xu and R. G. Bosisio, "Study of Goubau lines for submillimeter wave and terahertz frequency applications," IEE Proc., Part H: Microwaves, Antennas Propag. 151, 460-464 (2004).
    [CrossRef]
  31. J. Deibel, M. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
    [CrossRef]
  32. R. Syms and J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992).
  33. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-6 (2000).
    [CrossRef]
  34. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233-901 (2003).
    [CrossRef]
  35. U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42, 393-398 (1992).
    [CrossRef]
  36. F. Keilmann, "FIR microscopy," Infrared Phys. Technol. 36, 217-224 (1995).
    [CrossRef]
  37. C. W. McCutchen, "Transmission line probes for scanning photon-tunneling microscopy," J. Scanning Microsc. 17, 15-17 (1995).
    [CrossRef]
  38. H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
    [CrossRef]

2005 (1)

J. Deibel, M. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

2004 (8)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

Y. Xu and R. G. Bosisio, "Study of Goubau lines for submillimeter wave and terahertz frequency applications," IEE Proc., Part H: Microwaves, Antennas Propag. 151, 460-464 (2004).
[CrossRef]

S. Wang and X.-C. Zhang, "Pulsed terahertz tomography," J. Phys. D 37, R1-R36 (2004).
[CrossRef]

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. Part 1 43, L317-L319 (2004).
[CrossRef]

J. Zhang and D. Grischkowsky, "Waveguide terahertz time-domain spectroscopy of nanometer water layers," Opt. Lett. 29, 1617-1619 (2004).
[CrossRef] [PubMed]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Opt. Express 12, 5263-5268 (2004).
[CrossRef] [PubMed]

2003 (6)

K. Kawase, Y. Ogawa, and Y. Watanabe, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).
[CrossRef] [PubMed]

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef] [PubMed]

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
[CrossRef] [PubMed]

S. Coleman and D. Grischkowsky, "A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics," Appl. Phys. Lett. 83, 3656-3658 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233-901 (2003).
[CrossRef]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

2001 (2)

R. Mendis and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, "THz interconnect with low loss and low group velocity dispersion," IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
[CrossRef]

2000 (4)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-6 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

S. P. Jamison, R. W. McGown, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
[CrossRef]

1999 (2)

1996 (3)

1995 (2)

F. Keilmann, "FIR microscopy," Infrared Phys. Technol. 36, 217-224 (1995).
[CrossRef]

C. W. McCutchen, "Transmission line probes for scanning photon-tunneling microscopy," J. Scanning Microsc. 17, 15-17 (1995).
[CrossRef]

1992 (1)

U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42, 393-398 (1992).
[CrossRef]

1990 (1)

M. van Exter and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
[CrossRef]

1988 (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-260 (1988).
[CrossRef]

1950 (1)

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

Arnone, D. D.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
[CrossRef] [PubMed]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef] [PubMed]

Auston, D. H.

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-260 (1988).
[CrossRef]

Barkan, A.

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

Bosisio, R. G.

Y. Xu and R. G. Bosisio, "Study of Goubau lines for submillimeter wave and terahertz frequency applications," IEE Proc., Part H: Microwaves, Antennas Propag. 151, 460-464 (2004).
[CrossRef]

Chen, H.-T.

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Cho, G. C.

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Cole, B.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
[CrossRef] [PubMed]

Coleman, S.

S. Coleman and D. Grischkowsky, "A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics," Appl. Phys. Lett. 83, 3656-3658 (2003).
[CrossRef]

Cozens, J.

R. Syms and J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992).

Crawley, D.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
[CrossRef] [PubMed]

Deibel, J.

J. Deibel, M. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233-901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-6 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-6 (2000).
[CrossRef]

Escarra, M.

J. Deibel, M. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

Fischer, U. C.

U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42, 393-398 (1992).
[CrossRef]

Gallot, G.

George, R.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-6 (2000).
[CrossRef]

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. Part 1 43, L317-L319 (2004).
[CrossRef]

Goubau, G.

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

Grischkowsky, D.

J. Zhang and D. Grischkowsky, "Waveguide terahertz time-domain spectroscopy of nanometer water layers," Opt. Lett. 29, 1617-1619 (2004).
[CrossRef] [PubMed]

S. Coleman and D. Grischkowsky, "A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics," Appl. Phys. Lett. 83, 3656-3658 (2003).
[CrossRef]

R. Mendis and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, "THz interconnect with low loss and low group velocity dispersion," IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
[CrossRef]

S. P. Jamison, R. W. McGown, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of THz radiation through submillimeter-diameter circular waveguides," Opt. Lett. 24, 1431-1433 (1999).
[CrossRef]

M. van Exter and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
[CrossRef]

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Harrington, J. A.

Jacobsen, R. H.

Jamison, S. P.

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGown, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Jepsen, P. U.

Kawase, K.

Keiding, S. R.

Keilmann, F.

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

F. Keilmann, "FIR microscopy," Infrared Phys. Technol. 36, 217-224 (1995).
[CrossRef]

Kersting, R.

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233-901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-6 (2000).
[CrossRef]

Linfield, E. H.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef] [PubMed]

Longbottom, C.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
[CrossRef] [PubMed]

M. Planken, P. C.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook, Massachusetts Institute of Technology Radiation Laboratory Series (McGraw-Hill, 1951).

McCutchen, C. W.

C. W. McCutchen, "Transmission line probes for scanning photon-tunneling microscopy," J. Scanning Microsc. 17, 15-17 (1995).
[CrossRef]

McGowan, R. W.

McGown, R. W.

S. P. Jamison, R. W. McGown, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

Mendis, R.

R. Mendis and D. Grischkowsky, "THz interconnect with low loss and low group velocity dispersion," IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

Mittleman, D. M.

J. Deibel, M. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," IEEE J. Sel. Top. Quantum Electron. 2, 679-692 (1996).
[CrossRef]

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996).
[CrossRef] [PubMed]

Mueller, E.

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," IEEE J. Sel. Top. Quantum Electron. 2, 679-692 (1996).
[CrossRef]

R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, "Chemical recognition of gases and gas mixtures with terahertz waves," Opt. Lett. 21, 2011-2013 (1996).
[CrossRef] [PubMed]

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-260 (1988).
[CrossRef]

Ogawa, Y.

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. Part 1 43, L317-L319 (2004).
[CrossRef]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

Pedersen, P.

Pepper, M.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
[CrossRef] [PubMed]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233-901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-6 (2000).
[CrossRef]

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. Part 1 43, L317-L319 (2004).
[CrossRef]

Rudd, J. V.

J. V. Rudd, D. Zimdars, and M. Warmuth, "Compact fiber-pigtailed terahertz imaging system," in Commercial and Biomedical Applications of Ultrafast Lasers II, J.Neev and M.K.Reed, eds., Proc. SPIE 3934, 27-35 (2000).

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. Part 1 43, L317-L319 (2004).
[CrossRef]

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-260 (1988).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Syms, R.

R. Syms and J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992).

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. Part 1 43, L317-L319 (2004).
[CrossRef]

van der Valk, N. C.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

van Exter, M.

M. van Exter and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
[CrossRef]

Wallace, V. P.

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
[CrossRef] [PubMed]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef] [PubMed]

Wang, K.

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Wang, S.

S. Wang and X.-C. Zhang, "Pulsed terahertz tomography," J. Phys. D 37, R1-R36 (2004).
[CrossRef]

Warmuth, M.

J. V. Rudd, D. Zimdars, and M. Warmuth, "Compact fiber-pigtailed terahertz imaging system," in Commercial and Biomedical Applications of Ultrafast Lasers II, J.Neev and M.K.Reed, eds., Proc. SPIE 3934, 27-35 (2000).

Watanabe, Y.

Woodward, R. M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu and R. G. Bosisio, "Study of Goubau lines for submillimeter wave and terahertz frequency applications," IEE Proc., Part H: Microwaves, Antennas Propag. 151, 460-464 (2004).
[CrossRef]

Zapletal, M.

U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42, 393-398 (1992).
[CrossRef]

Zhang, J.

Zhang, X.-C.

S. Wang and X.-C. Zhang, "Pulsed terahertz tomography," J. Phys. D 37, R1-R36 (2004).
[CrossRef]

Zimdars, D.

J. V. Rudd, D. Zimdars, and M. Warmuth, "Compact fiber-pigtailed terahertz imaging system," in Commercial and Biomedical Applications of Ultrafast Lasers II, J.Neev and M.K.Reed, eds., Proc. SPIE 3934, 27-35 (2000).

Appl. Phys. Lett. (6)

S. P. Jamison, R. W. McGown, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fiber," Appl. Phys. Lett. 76, 1987-1989 (2000).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
[CrossRef]

S. Coleman and D. Grischkowsky, "A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics," Appl. Phys. Lett. 83, 3656-3658 (2003).
[CrossRef]

K. Wang, A. Barkan, and D. M. Mittleman, "Propagation effects in apertureless near-field optical antennas," Appl. Phys. Lett. 84, 305-307 (2004).
[CrossRef]

K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, "Antenna effects in terahertz apertureless near-field optical microscopy," Appl. Phys. Lett. 85, 2715-2717 (2004).
[CrossRef]

H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003).
[CrossRef]

Electron. Lett. (1)

J. Deibel, M. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005).
[CrossRef]

IEE Proc., Part H: Microwaves, Antennas Propag. (1)

Y. Xu and R. G. Bosisio, "Study of Goubau lines for submillimeter wave and terahertz frequency applications," IEE Proc., Part H: Microwaves, Antennas Propag. 151, 460-464 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-260 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," IEEE J. Sel. Top. Quantum Electron. 2, 679-692 (1996).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, "THz interconnect with low loss and low group velocity dispersion," IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. van Exter and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
[CrossRef]

Infrared Phys. Technol. (1)

F. Keilmann, "FIR microscopy," Infrared Phys. Technol. 36, 217-224 (1995).
[CrossRef]

J. Appl. Phys. (2)

R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000).
[CrossRef]

G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950).
[CrossRef]

J. Biol. Phys. (1)

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulsed imaging of skin cancer in the time and frequency domain," J. Biol. Phys. 29, 257-261 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," J. Biomed. Opt. 8, 303-307 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

S. Wang and X.-C. Zhang, "Pulsed terahertz tomography," J. Phys. D 37, R1-R36 (2004).
[CrossRef]

J. Scanning Microsc. (1)

C. W. McCutchen, "Transmission line probes for scanning photon-tunneling microscopy," J. Scanning Microsc. 17, 15-17 (1995).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Jpn. J. Appl. Phys. Part 1 43, L317-L319 (2004).
[CrossRef]

Nature (2)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-6 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233-901 (2003).
[CrossRef]

Ultramicroscopy (1)

U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation," Ultramicroscopy 42, 393-398 (1992).
[CrossRef]

Other (5)

R. Syms and J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, 1992).

J. V. Rudd, D. Zimdars, and M. Warmuth, "Compact fiber-pigtailed terahertz imaging system," in Commercial and Biomedical Applications of Ultrafast Lasers II, J.Neev and M.K.Reed, eds., Proc. SPIE 3934, 27-35 (2000).

D.Mittleman, ed., Sensing with Terahertz Radiation (Springer-Verlag, 2002).

N. Marcuvitz, Waveguide Handbook, Massachusetts Institute of Technology Radiation Laboratory Series (McGraw-Hill, 1951).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Arrival time as a function of incident position for a series of time-domain THz pulses propagating along a bare metal probe (squares) and a probe wrapped with a 0.5 mm polyvinyl chloride insulation layer (triangles), detected in a THz apertureless near-field scanning optical microscopy system. The solid lines show the least-squares linear fit to these data, from which the group velocities can be obtained. The inset shows the experimental setup. Broadband THz pulses are focused onto a vibrating probe. The focal spot can be moved along the shaft of the probe. The propagating THz pulses are measured by detecting the scattered radiation from the probe tip with a photoconductive receiver.

Fig. 2
Fig. 2

Experimental setup for the direct characterization of the THz wire waveguide. Broadband THz pulses are generated by a fiber-coupled photoconductive transmitter and focused onto a stainless-steel waveguide with a diameter of 0.9 mm. A second stainless-steel wire is placed at the focal spot, oriented perpendicular to the waveguide, to act as an input coupler. The input THz beam is horizontally polarized, and the propagating mode excited around the wire waveguide is radially polarized. The electric field of the propagating mode is detected at the end of the waveguide with a fiber-coupled photoconductive receiver, which is sensitive only to the vertical polarization component. The transmitter, the focusing lenses, and the coupler are all mounted on a movable stage that can be moved along the waveguide. The receiver is mounted on a stage that can be moved in three dimensions with respect to the end of the waveguide.

Fig. 3
Fig. 3

Spatial profile of the propagating mode on a metal wire waveguide. (a) Time-domain electric field waveforms detected with the receiver 3 mm above and 3 mm below the waveguide. The polarity reversal shows the radial nature of the guided mode. (b) The amplitude of the THz pulses as a function of the vertical displacement of the receiver (squares), which is measured at a propagation distance of 24 cm. The solid curve shows the prediction of the Sommerfeld wave model described in the text, in which a Hankel function is convolved with a Gaussian of 6 mm full width at half-maximum to account for the finite aperture of the detector.

Fig. 4
Fig. 4

Group velocity of the propagating THz pulses on a metal wire waveguide. (a) Arrival time as a function of incident position for a series of time-domain THz pulses detected using the setup illustrated in Fig. 2 (squares). The spectrum-weighted average group velocity of the guided mode is obtained from the least-squares linear fit to these data. The THz waveforms detected after 4 and 24 cm of propagation are shown in the insets. (b) Group velocity of the propagating mode as a function of frequency, derived from the spectra of the THz waveforms. No group-velocity dispersion is observed. This is consistent with the Sommerfeld wave model, in which the group velocity is predicted to vary by less than one part in 10 4 within the measured spectral range.

Fig. 5
Fig. 5

Amplitude of the THz pulses as a function of the vertical displacement of the receiver, measured at different propagation distances. These curves sketch the spatial profile of the guided mode along the wire waveguide and show a lateral spreading of the guided mode.

Fig. 6
Fig. 6

Attenuation characteristic of the guided wave on a metal wire waveguide. (a) The maximum peak-to-peak amplitude of the THz pulses detected at each propagation distance (filled squares). Measurements with the receiver moved away from the end of the waveguide are also made (open squares), showing a sharp drop of the pulse amplitude as the radiation propagates off of the end of the waveguide into air. (b) The amplitude attenuation coefficient of the guided mode as a function of frequency, derived by analyzing the spectra of the THz waveforms detected at different propagation distances. In contrast to other terahertz waveguides, this loss decreases with increasing frequency. The dashed line shows the conductivity loss of the stainless-steel wire, computed using Sommerfeld’s surface wave model.[24]

Fig. 7
Fig. 7

THz wave propagation on a 21 cm long wire waveguide with different bend radii. The open triangles show the amplitude of the detected THz pulses as a function of the radius of curvature. The filled squares show the amplitude attenuation coefficient as a function of the radius of curvature. The data can be described by an exponential loss, as in a bent optical fiber. The fit is shown by the solid curve.

Fig. 8
Fig. 8

A simple Y-splitter structure, consisting of a straight waveguide and a curved waveguide in contact with each other, as shown on the left. Part of the guided wave on the straight waveguide is coupled to the curved waveguide. THz waveforms detected at A, B, and C are shown on the right. The separation between A and B is 2 cm, and the THz receiver is located 3 mm below the plane of the splitter in these measurements.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E r = V r ln a b ,
H 1 ( 1 ) ( x ) 2 i π x .
v g = c n eff ( ω ) + ω d n eff d ω ,
n eff ( ω ) = Δ ϕ ( ω ) c ω d .
E ( x ) = E 0 exp ( a x ) .
E ( x ) = E 0 exp ( α x ) ,
α = α + ln ( E E ) x .
α = c 1 exp ( c 2 R ) ,

Metrics