## Abstract

I numerically model broad-bandwidth optical parametric oscillation and amplification to explore the influence of pump bandwidth on conversion efficiency, injection seeding, and generated spectra. I also study narrow-bandwidth pumping of broad-bandwidth signal and idler waves. I show that the relative group velocities of the three waves have a critical effect on device performance in all cases and provide physical explanations for this.

© 2005 Optical Society of America

Full Article |

PDF Article
### Equations (10)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\mid \Delta kL\mid \u2a7d2\pi ,$$
(2)
$$\Delta k=\left(\frac{\mathrm{d}{k}_{s}}{\mathrm{d}{\omega}_{s}}-\frac{\mathrm{d}{k}_{i}}{\mathrm{d}{\omega}_{i}}\right)\Delta {\omega}_{i}.$$
(3)
$$\mid \Delta k\mid =\mid \left(\frac{{n}_{g,s}}{c}-\frac{{n}_{g,i}}{c}\right)\Delta {\omega}_{i}\mid =\frac{2\pi}{L},$$
(4)
$$\Delta {\omega}_{\mathrm{si}}=\mid \frac{2\pi c}{L({n}_{g,s}-{n}_{g,i})}\mid .$$
(5)
$$\Delta {\nu}_{\mathrm{si}}=\Delta {\omega}_{\mathrm{si}}\u22152\pi =\mid 1\u2215{\tau}_{\mathrm{si}}\mid .$$
(6)
$$\Delta {\nu}_{\mathrm{pi}}=\mid 1\u2215{\tau}_{\mathrm{pi}}\mid ,$$
(7)
$$\Delta {\nu}_{\mathrm{ps}}=\mid 1\u2215{\tau}_{\mathrm{ps}}\mid .$$
(8)
$${\overline{n}}_{g}=({n}_{g,s}+{n}_{g,i})\u22152,$$
(9)
$$\overline{\tau}=L({n}_{g,p}-{\overline{n}}_{g})\u2215c,$$
(10)
$${\Delta}_{p}=\frac{\overline{\tau}}{{\tau}_{\mathrm{si}}}=\frac{{n}_{g,p}-{\overline{n}}_{g}}{{n}_{g,i}-{n}_{g,s}}.$$