Abstract

We prepared the Ag:BaTiO3 composite films by pulsed-laser deposition technique. The films were grown on MgO (100) substrates under a nitrogen pressure of 10.0 Pa at 600°C, and a parallel electric field was applied on the substrate during growth. The chemical natures of Ag in the films were measured by x-ray photoelectron spectroscopy. The linear optical properties of the films were studied in the wavelength range of 330 to 700 nm. The third-order nonlinear optical susceptibilities of the films were determined by z-scan method at the wavelength of 532 nm with a laser duration of 10 ns. The figure of merit (FOM) was 1 order of magnitude larger than that of the films that were grown without an electric field and reached 1.62×1010esucm. Our experimental results have demonstrated that an external electrical field can induce the metal-particle orientation in order and therefore enhances the FOM of the metal-dielectric composite films.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. Liao, W. Wen, and G. K. L. Wong, "Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles," Appl. Phys. A 80, 861-864 (2005).
    [CrossRef]
  2. A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
    [CrossRef]
  3. R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, "Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold," J. Appl. Phys. 95, 2755-2762 (2004).
    [CrossRef]
  4. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, "Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method," J. Appl. Phys. 79, 1244-1249 (1996).
    [CrossRef]
  5. K. P. Yuen, M. F. Law, K. W. Yu, and P. Sheng, "Optical nonlinearity enhancement via geometric anisotropy," Phys. Rev. E 56, R1322-1325 (1997).
    [CrossRef]
  6. J. P. Huang and K. W. Yu, "Optical nonlinearity enhancement of graded metallic films," Appl. Phys. Lett. 85, 94-96 (2004).
    [CrossRef]
  7. W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
    [CrossRef]
  8. W. J. Wen, D. W. Zheng, and K. N. Tu, "In situ time response measurement of the microspheres dispersed in electrorheological fluids," Phys. Rev. E 57, 4516-4519 (1998).
    [CrossRef]
  9. G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, "Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films," Appl. Phys. Lett. 81, 3969-3971 (2002).
    [CrossRef]
  10. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, "High-sensitivity, single-beam n2 measurements," Opt. Lett. 14, 955-957 (1989).
    [CrossRef] [PubMed]
  11. W. T. Wang, G. Yang, Z. H. Chen, Y. L. Zhou, and H. B. Lu, "Iron nanoparticles in amorphous BaTiO3 thin films with large third-order optical nonlinearity," J. Appl. Phys. 92, 7242-7245 (2002).
    [CrossRef]

2005 (1)

H. B. Liao, W. Wen, and G. K. L. Wong, "Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles," Appl. Phys. A 80, 861-864 (2005).
[CrossRef]

2004 (3)

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, "Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold," J. Appl. Phys. 95, 2755-2762 (2004).
[CrossRef]

J. P. Huang and K. W. Yu, "Optical nonlinearity enhancement of graded metallic films," Appl. Phys. Lett. 85, 94-96 (2004).
[CrossRef]

2002 (2)

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, "Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films," Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

W. T. Wang, G. Yang, Z. H. Chen, Y. L. Zhou, and H. B. Lu, "Iron nanoparticles in amorphous BaTiO3 thin films with large third-order optical nonlinearity," J. Appl. Phys. 92, 7242-7245 (2002).
[CrossRef]

1999 (1)

W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
[CrossRef]

1998 (1)

W. J. Wen, D. W. Zheng, and K. N. Tu, "In situ time response measurement of the microspheres dispersed in electrorheological fluids," Phys. Rev. E 57, 4516-4519 (1998).
[CrossRef]

1997 (1)

K. P. Yuen, M. F. Law, K. W. Yu, and P. Sheng, "Optical nonlinearity enhancement via geometric anisotropy," Phys. Rev. E 56, R1322-1325 (1997).
[CrossRef]

1996 (1)

Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, "Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method," J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

1989 (1)

Afonso, C. N.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, "Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold," J. Appl. Phys. 95, 2755-2762 (2004).
[CrossRef]

Chan, C. T.

W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
[CrossRef]

Chen, Z. H.

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, "Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films," Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

W. T. Wang, G. Yang, Z. H. Chen, Y. L. Zhou, and H. B. Lu, "Iron nanoparticles in amorphous BaTiO3 thin films with large third-order optical nonlinearity," J. Appl. Phys. 92, 7242-7245 (2002).
[CrossRef]

Compagnini, G.

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

del Coso, R.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, "Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold," J. Appl. Phys. 95, 2755-2762 (2004).
[CrossRef]

D'Urso, L.

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

Gonzalo, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, "Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold," J. Appl. Phys. 95, 2755-2762 (2004).
[CrossRef]

Huang, J. P.

J. P. Huang and K. W. Yu, "Optical nonlinearity enhancement of graded metallic films," Appl. Phys. Lett. 85, 94-96 (2004).
[CrossRef]

Law, M. F.

K. P. Yuen, M. F. Law, K. W. Yu, and P. Sheng, "Optical nonlinearity enhancement via geometric anisotropy," Phys. Rev. E 56, R1322-1325 (1997).
[CrossRef]

Liao, H. B.

H. B. Liao, W. Wen, and G. K. L. Wong, "Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles," Appl. Phys. A 80, 861-864 (2005).
[CrossRef]

Lin, Z. F.

W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
[CrossRef]

Lu, H. B.

W. T. Wang, G. Yang, Z. H. Chen, Y. L. Zhou, and H. B. Lu, "Iron nanoparticles in amorphous BaTiO3 thin films with large third-order optical nonlinearity," J. Appl. Phys. 92, 7242-7245 (2002).
[CrossRef]

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, "Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films," Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

Ma, H. R.

W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
[CrossRef]

Manabe, Y.

Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, "Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method," J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Nakamura, A.

Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, "Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method," J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Puglisi, O.

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

Requejo-Isidro, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, "Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold," J. Appl. Phys. 95, 2755-2762 (2004).
[CrossRef]

Said, A. A.

Sasaki, S.

Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, "Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method," J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Scalisi, A. A.

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

Sheik-Bahae, M.

Sheng, P.

W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
[CrossRef]

K. P. Yuen, M. F. Law, K. W. Yu, and P. Sheng, "Optical nonlinearity enhancement via geometric anisotropy," Phys. Rev. E 56, R1322-1325 (1997).
[CrossRef]

Solis, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, "Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold," J. Appl. Phys. 95, 2755-2762 (2004).
[CrossRef]

Tam, W. Y.

W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
[CrossRef]

Tanahashi,

Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, "Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method," J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Tohda, T.

Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, "Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method," J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Tu, K. N.

W. J. Wen, D. W. Zheng, and K. N. Tu, "In situ time response measurement of the microspheres dispersed in electrorheological fluids," Phys. Rev. E 57, 4516-4519 (1998).
[CrossRef]

Van Stryland, E. W.

Wang, N.

W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
[CrossRef]

Wang, W. T.

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, "Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films," Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

W. T. Wang, G. Yang, Z. H. Chen, Y. L. Zhou, and H. B. Lu, "Iron nanoparticles in amorphous BaTiO3 thin films with large third-order optical nonlinearity," J. Appl. Phys. 92, 7242-7245 (2002).
[CrossRef]

Wen, W.

H. B. Liao, W. Wen, and G. K. L. Wong, "Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles," Appl. Phys. A 80, 861-864 (2005).
[CrossRef]

Wen, W. J.

W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
[CrossRef]

W. J. Wen, D. W. Zheng, and K. N. Tu, "In situ time response measurement of the microspheres dispersed in electrorheological fluids," Phys. Rev. E 57, 4516-4519 (1998).
[CrossRef]

Wong, G. K.

H. B. Liao, W. Wen, and G. K. L. Wong, "Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles," Appl. Phys. A 80, 861-864 (2005).
[CrossRef]

Yang, G.

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, "Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films," Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

W. T. Wang, G. Yang, Z. H. Chen, Y. L. Zhou, and H. B. Lu, "Iron nanoparticles in amorphous BaTiO3 thin films with large third-order optical nonlinearity," J. Appl. Phys. 92, 7242-7245 (2002).
[CrossRef]

Yang, G. Z.

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, "Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films," Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

Yu, K. W.

J. P. Huang and K. W. Yu, "Optical nonlinearity enhancement of graded metallic films," Appl. Phys. Lett. 85, 94-96 (2004).
[CrossRef]

K. P. Yuen, M. F. Law, K. W. Yu, and P. Sheng, "Optical nonlinearity enhancement via geometric anisotropy," Phys. Rev. E 56, R1322-1325 (1997).
[CrossRef]

Yuen, K. P.

K. P. Yuen, M. F. Law, K. W. Yu, and P. Sheng, "Optical nonlinearity enhancement via geometric anisotropy," Phys. Rev. E 56, R1322-1325 (1997).
[CrossRef]

Zheng, D. W.

W. J. Wen, D. W. Zheng, and K. N. Tu, "In situ time response measurement of the microspheres dispersed in electrorheological fluids," Phys. Rev. E 57, 4516-4519 (1998).
[CrossRef]

Zhou, Y. L.

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, "Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films," Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

W. T. Wang, G. Yang, Z. H. Chen, Y. L. Zhou, and H. B. Lu, "Iron nanoparticles in amorphous BaTiO3 thin films with large third-order optical nonlinearity," J. Appl. Phys. 92, 7242-7245 (2002).
[CrossRef]

Appl. Phys. A (1)

H. B. Liao, W. Wen, and G. K. L. Wong, "Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles," Appl. Phys. A 80, 861-864 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

J. P. Huang and K. W. Yu, "Optical nonlinearity enhancement of graded metallic films," Appl. Phys. Lett. 85, 94-96 (2004).
[CrossRef]

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, "Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films," Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

J. Appl. Phys. (3)

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, "Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold," J. Appl. Phys. 95, 2755-2762 (2004).
[CrossRef]

Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, "Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method," J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

W. T. Wang, G. Yang, Z. H. Chen, Y. L. Zhou, and H. B. Lu, "Iron nanoparticles in amorphous BaTiO3 thin films with large third-order optical nonlinearity," J. Appl. Phys. 92, 7242-7245 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (2)

K. P. Yuen, M. F. Law, K. W. Yu, and P. Sheng, "Optical nonlinearity enhancement via geometric anisotropy," Phys. Rev. E 56, R1322-1325 (1997).
[CrossRef]

W. J. Wen, D. W. Zheng, and K. N. Tu, "In situ time response measurement of the microspheres dispersed in electrorheological fluids," Phys. Rev. E 57, 4516-4519 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

W. J. Wen, N. Wang, H. R. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, and P. Sheng, "Field induced structural transition in mesocrystallites," Phys. Rev. Lett. 82, 4248-4251 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

TEM images of the Ag : BaTiO 3 composite films: (a), sample A (without an applied electric field); (b), sample B with an applied electric field of 1000 V cm .

Fig. 2
Fig. 2

X-ray diffraction patterns of Ag : BaTiO 3 composite films grown at 600°C on MgO substrates.

Fig. 3
Fig. 3

X-ray photoelectron core-level-spectra of Ag 3 d for the Ag : BaTiO 3 composite films.

Fig. 4
Fig. 4

Absorption spectra for sample A (without an applied electric field) and sample B (with an applied electric field of 1000 V cm ). Curve (c) is the absorption spectrum for the pure BaTiO 3 film.

Fig. 5
Fig. 5

The z-scan data of sample A (without an applied electric field) with (a) an open and (b) a closed aperture. The solid curves indicate the theoretical fit.

Fig. 6
Fig. 6

The z-scan data of sample B (with an applied electric field of 1000 V cm ) with (a) an open and (b) a closed aperture. The solid curves indicate the theoretical fit.

Tables (1)

Tables Icon

Table 1 Linear and Nonlinear Optical Properties of the Samples at 532 nm

Metrics