Abstract

We demonstrate spectral multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy based on a single Ti:sapphire oscillator and a nonlinear photonic-crystal fiber (PCF). The Stokes pulse is generated by spectral conversion of the laser pulse in a PCF. The pump pulse is either a highly chirped pulse or a pulse spectrally compressed in a PCF. A region of the Raman spectrum from 800to4000cm1 is accessible with two different PCFs. Spectral resolution improvement by 1 order of magnitude over a transform-limited pump pulse utilizing a chirped or spectrally compressed pump pulse is demonstrated. The CARS spectrum is distorted for short, chirped pump pulses. We show that the quality of the spectrum is significantly improved when using a spectrally compressed pump pulse.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
    [CrossRef]
  2. J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
    [CrossRef] [PubMed]
  3. E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
    [CrossRef] [PubMed]
  4. M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
    [CrossRef]
  5. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004).
    [CrossRef]
  6. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, "High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
    [CrossRef]
  7. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  8. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003).
    [CrossRef] [PubMed]
  9. S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Microstructure fibers as frequency-tunable sources of ultrashort pulses for coherent nonlinear spectroscopy," Appl. Phys. B: Lasers Opt. 78, 565-567 (2004).
    [CrossRef]
  10. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995).
  11. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  13. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. R. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
    [CrossRef] [PubMed]
  14. M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
    [CrossRef]

2004

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004).
[CrossRef]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, "High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Microstructure fibers as frequency-tunable sources of ultrashort pulses for coherent nonlinear spectroscopy," Appl. Phys. B: Lasers Opt. 78, 565-567 (2004).
[CrossRef]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. R. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
[CrossRef] [PubMed]

2003

2002

M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

J. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

2001

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

2000

1993

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
[CrossRef]

Akimov, D. A.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Microstructure fibers as frequency-tunable sources of ultrashort pulses for coherent nonlinear spectroscopy," Appl. Phys. B: Lasers Opt. 78, 565-567 (2004).
[CrossRef]

Alfimov, M. V.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Microstructure fibers as frequency-tunable sources of ultrashort pulses for coherent nonlinear spectroscopy," Appl. Phys. B: Lasers Opt. 78, 565-567 (2004).
[CrossRef]

Andersen, T. V.

Cheng, J.

J. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

de Boij, W. P.

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, "High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

Hansen, K. P.

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, "High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

Hilligsøe, K. M.

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
[CrossRef]

Ivanov, A. A.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Microstructure fibers as frequency-tunable sources of ultrashort pulses for coherent nonlinear spectroscopy," Appl. Phys. B: Lasers Opt. 78, 565-567 (2004).
[CrossRef]

Jia, Y. K.

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

Johnson, J. C.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004).
[CrossRef]

Keiding, S. R.

Knutsen, K. P.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004).
[CrossRef]

Konorov, S. O.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Microstructure fibers as frequency-tunable sources of ultrashort pulses for coherent nonlinear spectroscopy," Appl. Phys. B: Lasers Opt. 78, 565-567 (2004).
[CrossRef]

Kristiansen, R.

Larsen, J. J.

Miller, A. E.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004).
[CrossRef]

Mølmer, K.

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995).

Müller, M.

M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

Nielsen, C. K.

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
[CrossRef]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Paulsen, H. N.

Petersen, P. B.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004).
[CrossRef]

Potma, E. O.

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Ranka, J. K.

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Saykally, R. J.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004).
[CrossRef]

Schins, J. M.

M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Stentz, A. J.

Thøgersen, J.

van Haastert, P. J. M.

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Volkmer, A.

Wiersma, D. A.

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Windeler, R. S.

Xie, X. S.

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

J. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002).
[CrossRef]

Zheltikov, A. M.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Microstructure fibers as frequency-tunable sources of ultrashort pulses for coherent nonlinear spectroscopy," Appl. Phys. B: Lasers Opt. 78, 565-567 (2004).
[CrossRef]

Zheng, G.

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, "High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

Appl. Phys. B: Lasers Opt.

S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Microstructure fibers as frequency-tunable sources of ultrashort pulses for coherent nonlinear spectroscopy," Appl. Phys. B: Lasers Opt. 78, 565-567 (2004).
[CrossRef]

Appl. Phys. Lett.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, "High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

M. Oberthaler and R. A. Höpfel, "Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers," Appl. Phys. Lett. 63, 1017-1019 (1993).
[CrossRef]

Biophys. J.

J. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002).
[CrossRef] [PubMed]

Chem. Phys. Lett.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranges with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002).
[CrossRef]

Nature

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. U.S.A. 98, 1577-1582 (2001).
[CrossRef] [PubMed]

Science

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Resonant (left) and nonresonant (right) contributions to the signal at the anti-Stokes frequency.

Fig. 2
Fig. 2

Spectra of the pump (dashed curve) and Stokes pulses from fiber 1 (thick curve) and fiber 2 (thin curve). Both Stokes pulses have been spectrally filtered by low-pass filters and a dichroic mirror, which collectively act as a low-pass filter with a cutoff at 870 nm .

Fig. 3
Fig. 3

Experimental setup for SCARS microscopy. L, Ti:sapphire laser oscillator; BS, beamsplitter; P, prism pair; PCF, photonic-crystal fiber; S, sample; XYZ, piezo 3D translation stage; D, detection system. The PCF marked by the dashed box is absent in the setup for CCARS microscopy.

Fig. 4
Fig. 4

Wavelength versus time sketches of the pump (solid), and Stokes (dashed) pulses in (a) CCARS, and (b) SCARS.

Fig. 5
Fig. 5

CCARS spectrum of liquid cycloheptanone and Raman spectrum (inset). Arrows indicate the location of the peaks in the spontaneous Raman spectrum.

Fig. 6
Fig. 6

(a) Dependency upon pump–pulse chirp of the CCARS spectrum of methanol. Inset shows the Raman spectrum. (b) Calculation of the CCARS spectrum of methanol. Values of the parameters were A j = 1 , Ω 1 = 2836 cm 1 , Ω 2 = 2945 cm 1 , Γ 1 = 10 cm 1 , and Γ 2 = 15 cm 1 .

Fig. 7
Fig. 7

Output spectrum of fiber 2 for an input pulse chirped to 2.5 ps versus input power. Spectra are normalized to the input power.

Fig. 8
Fig. 8

Comparison between (a) CCARS spectrum of methanol for 1.4 ps pump pulse duration and (b) SCARS spectrum with a pump pulse of similar duration.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I AS ( ω AS ) d ω P 1 d ω S d ω P 2 [ χ NR ( 3 ) ( ω AS ; ω P 1 , ω S , ω P 2 ) + χ R ( 3 ) ( ω AS ; ω P 1 , ω S , ω P 2 ) ] × E P ( ω P 1 ) E S * ( ω S ) E P ( ω P 2 ) 2 ,
Δ ω AS = Δ ω P τ P τ S ,
I AS ( ω AS ) d ω P 2 χ R ( 3 ) [ ω AS ; ω P , ( ω P + ω P 2 ω AS ) , ω P 2 ] E P ( ω P ) 2 ,
χ R ( 3 ) = j A j Ω j ( ω P ω S ) i Γ j ,
E final ( t ) = E start ( t ) exp [ i n 2 I ( t ) z ] ,

Metrics