Abstract

A study of a ring resonator in a Sagnac loop is presented. The results of a theoretical analysis based on Jones calculus are confirmed by experiments. Comparison of a ring resonator in a Sagnac loop with a ring only is performed, and the advantages of our scheme are pointed out. The scheme can be used to increase the measurement sensitivity to small birefringence and associated polarization mode dispersion and to decrease the threshold for Sagnac-loop-based nonlinear switching and laser mode locking.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Heebner and R. Boyd, "Enhanced all-optical switching by use of a nonlinear fiber ring resonator," Opt. Lett. 24, 847-849 (1999).
    [CrossRef]
  2. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
    [CrossRef]
  3. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. B. Boyd, R. Grover, and P.-T. Ho, "Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators," Opt. Lett. 29, 769-771 (2004).
    [CrossRef] [PubMed]
  4. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Compact microring notch filters," IEEE Photonics Technol. Lett. 12, 398-400 (2000).
    [CrossRef]
  5. A. Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technol. Lett. 14, 483-485 (2002).
    [CrossRef]
  6. J. M. Choi, R. K. Lee, and A. Yariv, "Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillations," Opt. Lett. 26, 1236-1238 (2001).
    [CrossRef]
  7. I. Golub and E. Simova, "pi-shifted Sagnac interferometer for characterization of femtosecond first- and second-order polarization mode dispersion," Opt. Lett. 27, 1681-1683 (2002).
    [CrossRef]
  8. E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photonics Technol. Lett. 15, 960-962 (2003).
    [CrossRef]
  9. I. Golub and E. Simova, "Loop of the rings: amplification of the phases of counter-propagating waves by a ring resonator in a Sagnac loop," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optic and Photonic Series (Optical Society of America, Washington, D.C., 2004), paper CTuX1.
  10. I. Golub and E. Simova, "Ring resonator in a Sagnac interferometer as a birefringence magnifier," Opt. Lett. 30, 87-89 (2005).
    [CrossRef] [PubMed]
  11. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, "Optical gyroscope with whispering gallery mode optical cavities," Opt. Commun. 233, 107-112 (2004).
    [CrossRef]
  12. E. A. Kuzin, B. I. Escamilla, D. E. Garcia-Gomez, and J. W. Haus, "Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation," Opt. Lett. 15, 1559-1561 (2001).
    [CrossRef]
  13. S. Blair, J. E. Heebner, and R. Boyd, "Beyond the absorption-limited nonlinear phase shift with microring resonators," Opt. Lett. 27, 357-359 (2002).
    [CrossRef]
  14. Y. Chen and S. Blair, "Nonlinear phase shift of cascaded microring resonators," J. Opt. Soc. Am. B 20, 2125-2132 (2003).
    [CrossRef]
  15. J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and R. K. Kostuk, "Measurement of waveguide birefringence using a ring resonator," IEEE Photonics Technol. Lett. 16, 1134-1136 (2004).
    [CrossRef]
  16. C. D. Poole and J. Nagel, "Polarization effects in lightwave systems," in Optical Fiber Telecommunications III, I.P.Kaminow and T.L.Koch, eds. (Academic, 1997), pp. 114-161.
    [CrossRef]

2005

2004

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, "Optical gyroscope with whispering gallery mode optical cavities," Opt. Commun. 233, 107-112 (2004).
[CrossRef]

J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and R. K. Kostuk, "Measurement of waveguide birefringence using a ring resonator," IEEE Photonics Technol. Lett. 16, 1134-1136 (2004).
[CrossRef]

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. B. Boyd, R. Grover, and P.-T. Ho, "Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators," Opt. Lett. 29, 769-771 (2004).
[CrossRef] [PubMed]

2003

E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photonics Technol. Lett. 15, 960-962 (2003).
[CrossRef]

Y. Chen and S. Blair, "Nonlinear phase shift of cascaded microring resonators," J. Opt. Soc. Am. B 20, 2125-2132 (2003).
[CrossRef]

2002

2001

J. M. Choi, R. K. Lee, and A. Yariv, "Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillations," Opt. Lett. 26, 1236-1238 (2001).
[CrossRef]

E. A. Kuzin, B. I. Escamilla, D. E. Garcia-Gomez, and J. W. Haus, "Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation," Opt. Lett. 15, 1559-1561 (2001).
[CrossRef]

2000

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Compact microring notch filters," IEEE Photonics Technol. Lett. 12, 398-400 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
[CrossRef]

1999

Absil, P. P.

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Compact microring notch filters," IEEE Photonics Technol. Lett. 12, 398-400 (2000).
[CrossRef]

Blair, S.

Boyd, R.

Boyd, R. B.

Carriere, J. T. A.

J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and R. K. Kostuk, "Measurement of waveguide birefringence using a ring resonator," IEEE Photonics Technol. Lett. 16, 1134-1136 (2004).
[CrossRef]

Chen, Y.

Cho, P. S.

Choi, J. M.

Escamilla, B. I.

E. A. Kuzin, B. I. Escamilla, D. E. Garcia-Gomez, and J. W. Haus, "Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation," Opt. Lett. 15, 1559-1561 (2001).
[CrossRef]

Frantz, J. A.

J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and R. K. Kostuk, "Measurement of waveguide birefringence using a ring resonator," IEEE Photonics Technol. Lett. 16, 1134-1136 (2004).
[CrossRef]

Garcia-Gomez, D. E.

E. A. Kuzin, B. I. Escamilla, D. E. Garcia-Gomez, and J. W. Haus, "Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation," Opt. Lett. 15, 1559-1561 (2001).
[CrossRef]

Golub, I.

I. Golub and E. Simova, "Ring resonator in a Sagnac interferometer as a birefringence magnifier," Opt. Lett. 30, 87-89 (2005).
[CrossRef] [PubMed]

E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photonics Technol. Lett. 15, 960-962 (2003).
[CrossRef]

I. Golub and E. Simova, "pi-shifted Sagnac interferometer for characterization of femtosecond first- and second-order polarization mode dispersion," Opt. Lett. 27, 1681-1683 (2002).
[CrossRef]

I. Golub and E. Simova, "Loop of the rings: amplification of the phases of counter-propagating waves by a ring resonator in a Sagnac loop," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optic and Photonic Series (Optical Society of America, Washington, D.C., 2004), paper CTuX1.

Grover, R.

Haus, J. W.

E. A. Kuzin, B. I. Escamilla, D. E. Garcia-Gomez, and J. W. Haus, "Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation," Opt. Lett. 15, 1559-1561 (2001).
[CrossRef]

Heebner, J. E.

Ho, P.-T.

Honkanen, S.

J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and R. K. Kostuk, "Measurement of waveguide birefringence using a ring resonator," IEEE Photonics Technol. Lett. 16, 1134-1136 (2004).
[CrossRef]

Hryniewicz, J. V.

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Compact microring notch filters," IEEE Photonics Technol. Lett. 12, 398-400 (2000).
[CrossRef]

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, "Optical gyroscope with whispering gallery mode optical cavities," Opt. Commun. 233, 107-112 (2004).
[CrossRef]

Joneckis, L. G.

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Compact microring notch filters," IEEE Photonics Technol. Lett. 12, 398-400 (2000).
[CrossRef]

Kostuk, R. K.

J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and R. K. Kostuk, "Measurement of waveguide birefringence using a ring resonator," IEEE Photonics Technol. Lett. 16, 1134-1136 (2004).
[CrossRef]

Kuzin, E. A.

E. A. Kuzin, B. I. Escamilla, D. E. Garcia-Gomez, and J. W. Haus, "Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation," Opt. Lett. 15, 1559-1561 (2001).
[CrossRef]

Lee, R. K.

Lepeshkin, N. N.

Little, B. E.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Compact microring notch filters," IEEE Photonics Technol. Lett. 12, 398-400 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
[CrossRef]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, "Optical gyroscope with whispering gallery mode optical cavities," Opt. Commun. 233, 107-112 (2004).
[CrossRef]

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, "Optical gyroscope with whispering gallery mode optical cavities," Opt. Commun. 233, 107-112 (2004).
[CrossRef]

Nagel, J.

C. D. Poole and J. Nagel, "Polarization effects in lightwave systems," in Optical Fiber Telecommunications III, I.P.Kaminow and T.L.Koch, eds. (Academic, 1997), pp. 114-161.
[CrossRef]

Poole, C. D.

C. D. Poole and J. Nagel, "Polarization effects in lightwave systems," in Optical Fiber Telecommunications III, I.P.Kaminow and T.L.Koch, eds. (Academic, 1997), pp. 114-161.
[CrossRef]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, "Optical gyroscope with whispering gallery mode optical cavities," Opt. Commun. 233, 107-112 (2004).
[CrossRef]

Schweinsberg, A.

Simova, E.

I. Golub and E. Simova, "Ring resonator in a Sagnac interferometer as a birefringence magnifier," Opt. Lett. 30, 87-89 (2005).
[CrossRef] [PubMed]

E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photonics Technol. Lett. 15, 960-962 (2003).
[CrossRef]

I. Golub and E. Simova, "pi-shifted Sagnac interferometer for characterization of femtosecond first- and second-order polarization mode dispersion," Opt. Lett. 27, 1681-1683 (2002).
[CrossRef]

I. Golub and E. Simova, "Loop of the rings: amplification of the phases of counter-propagating waves by a ring resonator in a Sagnac loop," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optic and Photonic Series (Optical Society of America, Washington, D.C., 2004), paper CTuX1.

Wicks, G. W.

Wilson, R. A.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Compact microring notch filters," IEEE Photonics Technol. Lett. 12, 398-400 (2000).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
[CrossRef]

Yariv, A.

Youmans, B. R.

J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and R. K. Kostuk, "Measurement of waveguide birefringence using a ring resonator," IEEE Photonics Technol. Lett. 16, 1134-1136 (2004).
[CrossRef]

IEEE Photonics Technol. Lett.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Compact microring notch filters," IEEE Photonics Technol. Lett. 12, 398-400 (2000).
[CrossRef]

A. Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technol. Lett. 14, 483-485 (2002).
[CrossRef]

E. Simova and I. Golub, "Phase-stepping an all-fiber Sagnac loop for full characterization of femtosecond PMD," IEEE Photonics Technol. Lett. 15, 960-962 (2003).
[CrossRef]

J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and R. K. Kostuk, "Measurement of waveguide birefringence using a ring resonator," IEEE Photonics Technol. Lett. 16, 1134-1136 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, "Optical gyroscope with whispering gallery mode optical cavities," Opt. Commun. 233, 107-112 (2004).
[CrossRef]

Opt. Lett.

E. A. Kuzin, B. I. Escamilla, D. E. Garcia-Gomez, and J. W. Haus, "Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation," Opt. Lett. 15, 1559-1561 (2001).
[CrossRef]

S. Blair, J. E. Heebner, and R. Boyd, "Beyond the absorption-limited nonlinear phase shift with microring resonators," Opt. Lett. 27, 357-359 (2002).
[CrossRef]

I. Golub and E. Simova, "Ring resonator in a Sagnac interferometer as a birefringence magnifier," Opt. Lett. 30, 87-89 (2005).
[CrossRef] [PubMed]

J. E. Heebner and R. Boyd, "Enhanced all-optical switching by use of a nonlinear fiber ring resonator," Opt. Lett. 24, 847-849 (1999).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25, 554-556 (2000).
[CrossRef]

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. B. Boyd, R. Grover, and P.-T. Ho, "Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators," Opt. Lett. 29, 769-771 (2004).
[CrossRef] [PubMed]

J. M. Choi, R. K. Lee, and A. Yariv, "Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillations," Opt. Lett. 26, 1236-1238 (2001).
[CrossRef]

I. Golub and E. Simova, "pi-shifted Sagnac interferometer for characterization of femtosecond first- and second-order polarization mode dispersion," Opt. Lett. 27, 1681-1683 (2002).
[CrossRef]

Other

I. Golub and E. Simova, "Loop of the rings: amplification of the phases of counter-propagating waves by a ring resonator in a Sagnac loop," in Conference on Lasers and Electro-Optics, Vol. 96 of OSA Trends in Optic and Photonic Series (Optical Society of America, Washington, D.C., 2004), paper CTuX1.

C. D. Poole and J. Nagel, "Polarization effects in lightwave systems," in Optical Fiber Telecommunications III, I.P.Kaminow and T.L.Koch, eds. (Academic, 1997), pp. 114-161.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of the Sagnac interferometer incorporating a ring resonator.

Fig. 2
Fig. 2

(a) Calculated output of transmission arm 2 in the SI only as a function of wavelength for three different birefringence values, δ = π 40 (solid line), π 2 (dotted line) and π (dashed line); (b) Same as in (a) but for SI, which includes an RR with R = 0.9 .

Fig. 3
Fig. 3

Comparison of the theoretical plots of (a), (c), (e) RR only and (b), (d), (f) RR in SI for large, medium, and small values of the birefringence, R = 0.9 and variable absorption α: (a) and (b) α = 0.0 , (c) and (d) α = 0.01 ( 0.1 dB ) , (e) and (f) α = 0.1 ( 1 dB ) .

Fig. 4
Fig. 4

Comparison of the theoretical plots of (a), (c), (e) RR only and (b), (d), (f) RR in SI for large, medium, and small values of the birefringence, α = 0.05 ( 0.4 dB ) and variable reflection coefficient R: (a) and (b) R = 0.95 , (c) and (d) R = 0.9 , and (e) and (f) R = 0.5 .

Fig. 5
Fig. 5

RR-only performance comparison between (a), (c), (e) experimental plots and (b), (d), (f) fitted plots for different birefringence in the fiber coupler. (a) and (b) R = 0.5 , (c) and (d) R = 0.9 , (e) and (f) R = 0.95 .

Fig. 6
Fig. 6

Experimental plots of output of arm 1 (dashed curve) and arm 2 (solid curve) of the SI with the RR according to Fig. 1, with reflection coefficient R = 0.9 as a function of wavelength or three birefringence values increasing from (a) to (c) induced by stress in the fiber RR.

Fig. 7
Fig. 7

Theoretical plots of output of arm 1 (dashed curve) and arm 2 (solid curve) of the SI with the RR, with reflection coefficient R = 0.9 as a function of wavelength for the three birefringence values fitted to the experimental results in Figs. 6a, 6b, and 6c, respectively.

Fig. 8
Fig. 8

Experimental plots of output of arm 1 (dashed curve) and arm 2 (solid curve) of the SI with RR according to Fig. 1, with reflection coefficient R = 0.5 as a function of wavelength for three birefringence values increasing from (a) to (c) induced by stress in the fiber RR.

Fig. 9
Fig. 9

Experimental plots (a) and (b) of output of arm 1 (dashed curve) and arm 2 (solid curve) of the SI with the RR with reflection coefficient R = 0.95 as a function of wavelength for two birefringence values increasing from (a) to (b) induced by stress in the fiber RR.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E n c = [ r J a ( δ ) ] [ 1 r J a ( δ ) ] E n in , E n a = [ r J c ( δ ) ] [ 1 r J c ( δ ) ] E n in ,
J DUT c = exp ( α 0 ) Q [ exp ( i δ 2 α 2 ) 0 0 exp ( i δ 2 + α 2 ) ] Q 1 ,
J DUT a = exp ( α 0 ) Q 1 [ exp ( i δ 2 α 2 ) 0 0 exp ( i δ 2 + α 2 ) ] Q ,
I n = [ r 2 + exp ( 2 α 0 + α ) ] 2 r exp ( α 0 + α 2 ) cos ( δ ± φ RR ) [ 1 + r 2 exp ( 2 α 0 + α ) ] 2 r exp ( α 0 + α 2 ) cos ( δ ± φ RR ) ,
Δ λ TE = λ TE 2 n RR L RR + n TE L DUT , Δ λ TM = λ TM 2 n RR L RR + n TM L DUT ,
Δ n DUT L DUT = λ TE 2 Δ λ TE λ TM 2 Δ λ TM λ 2 Δ FSR FSR 2 .
( Δ n DUT L DUT ) min λ ( δ λ ) min Δ λ λ π ( 1 r 2 ) r ,
E 1 n out = K n 1 2 ( 1 K n ) 1 2 J HWP a J a ( δ ) E 1 n in + K n 1 2 ( 1 K n ) 1 2 J c ( δ ) J HWP c E 1 n in ,
E 2 n out = K n J HWP a J a ( δ ) E 1 n in + ( 1 K n ) J c ( δ ) J HWP c E 1 n in ,
J HWP c = ( i cos 2 ρ i sin 2 ρ i sin 2 ρ i cos 2 ρ ) ,
J HWP a = ( i cos 2 ρ i sin 2 ρ i sin 2 ρ i cos 2 ρ ) ,
I 2 out = i 2 { r exp [ ( α 0 + α 2 ) + i ( φ RR δ 2 ) ] 1 r exp [ ( α 0 + α 2 ) + i ( φ RR δ 2 ) ] r exp [ ( α 0 + α 2 ) + i ( φ RR + δ 2 ) ] 1 r exp [ ( α 0 + α 2 ) + i ( φ RR + δ 2 ) ] } sin ( 2 ρ ) 2 .

Metrics