Abstract

We demonstrate an atomic interferometer in which the atom passes through a single-zone optical beam consisting of a pair of bichromatic counterpropagating fields. During the passage, the atomic wave packets in two distinct internal states trace out split trajectories, guided by the optical beams, with the amplitude and spread of each wave packet varying continuously, producing fringes that can reach a visibility close to unity. Theoretically, the rotation sensitivity of this continuous interferometer (CI) can be comparable to that of the Borde–Chu interferometer. The relative simplicity of the CI makes it a potentially better candidate for practical applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Borde, "Atomic interferometry with internal state labeling," Phys. Lett. A 140, 10-12 (1989).
    [Crossref]
  2. M. Kasevich and S. Chu, "Atomic interferometry using stimulated Raman transitions," Phys. Rev. Lett. 67, 181-184 (1991).
    [Crossref] [PubMed]
  3. L. Gustavson, P. Bouyer, and M. A. Kasevich, "Precision rotation measurements with an atom interferometer gyroscope," Phys. Rev. Lett. 78, 2046-2049 (1997).
    [Crossref]
  4. M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, "Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer," Phys. Rev. Lett. 81, 971-974 (1998).
    [Crossref]
  5. T. J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, "Large area light-pulse atom interferometry," Phys. Rev. Lett. 85, 4498-4501 (2000).
    [Crossref] [PubMed]
  6. Y. Tan, J. Morzinski, A. V. Turukhin, P. S. Bhatia, and M. S. Shahriar, "Two-dimensional atomic interferometry for creation of nanostructures," Opt. Commun. 206, 141-147 (2002).
    [Crossref]
  7. D. Keith, C. Ekstrom, Q. Turchette, and D. E. Pritchard, "An interferometer for atoms," Phys. Rev. Lett. 66, 2693-2696 (1991).
    [Crossref] [PubMed]
  8. D. S. Weiss, B. C. Young, and S. Chu, "Precision-measurement of the photon recoil of an atom using atomic interferometry," Phys. Rev. Lett. 70, 2706-2709 (1993).
    [Crossref] [PubMed]
  9. T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel, and J. Mlynek, "Magnetooptical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
    [Crossref] [PubMed]
  10. U. Janicke and M. Wilkens, "Atom motion in a magnetooptical field," Phys. Rev. A 50, 3265-3275 (1994).
    [Crossref] [PubMed]
  11. R. Grimm, J. Soding, and Yu. B. Ovchinnikov, "Coherent beam splitter for atoms based on a bichromatic standing light wave" Opt. Lett. 19, 658-660 (1994).
    [Crossref] [PubMed]
  12. T. Pfau, C. S. Adams, and J. Mlynek, "Proposal for a magnetooptical beam splitter for atoms," Europhys. Lett. 21, 439-444 (1993).
    [Crossref]
  13. K. Johnson, A. Chu, T. W. Lynn, K. Berggren, M. S. Shahriar, and M. G. Prentiss, "Demonstration of a nonmagnetic blazed-grating atomic beam splitter," Opt. Lett. 20, 1310-1312 (1995).
    [Crossref] [PubMed]
  14. M. S. Shahriar, M. Jheeta, Y. Tan, P. Pradhan, and A. Gangat, "Continuously guided atomic interferometry using a single-zone optical excitation: theoretical analysis" Opt. Commun. 243, 183-201 (2004).
    [Crossref]
  15. P. M. Radmore and P. L. Knight, "Population trapping and dispersion in a 3-level system," J. Phys. B 15, 561-573 (1982).
    [Crossref]
  16. M. Prentiss, N. Bigelow, M. S. Shahriar, and P. Hemmer, "Forces on three-level atoms including coherent population trapping," Opt. Lett. 16, 1695-1697 (1991).
    [Crossref] [PubMed]
  17. P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
    [Crossref] [PubMed]
  18. M. S. Shahriar and P. R. Hemmer, "Direct excitation of microwave spin dressed-state using a laser-excited resonance laser interaction," Phys. Rev. Lett. 65, 1865-1868 (1990).
    [Crossref] [PubMed]
  19. M. S. Shahriar, P. Hemmer, D. P. Katz, A. Lee, and M. Prentiss, "Dark-state-based three-element vector model for the stimulated Raman interaction," Phys. Rev. A 55, 2272-2282 (1997).
    [Crossref]

2004 (1)

M. S. Shahriar, M. Jheeta, Y. Tan, P. Pradhan, and A. Gangat, "Continuously guided atomic interferometry using a single-zone optical excitation: theoretical analysis" Opt. Commun. 243, 183-201 (2004).
[Crossref]

2002 (1)

Y. Tan, J. Morzinski, A. V. Turukhin, P. S. Bhatia, and M. S. Shahriar, "Two-dimensional atomic interferometry for creation of nanostructures," Opt. Commun. 206, 141-147 (2002).
[Crossref]

2000 (1)

T. J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, "Large area light-pulse atom interferometry," Phys. Rev. Lett. 85, 4498-4501 (2000).
[Crossref] [PubMed]

1998 (1)

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, "Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer," Phys. Rev. Lett. 81, 971-974 (1998).
[Crossref]

1997 (2)

L. Gustavson, P. Bouyer, and M. A. Kasevich, "Precision rotation measurements with an atom interferometer gyroscope," Phys. Rev. Lett. 78, 2046-2049 (1997).
[Crossref]

M. S. Shahriar, P. Hemmer, D. P. Katz, A. Lee, and M. Prentiss, "Dark-state-based three-element vector model for the stimulated Raman interaction," Phys. Rev. A 55, 2272-2282 (1997).
[Crossref]

1995 (1)

1994 (2)

1993 (3)

T. Pfau, C. S. Adams, and J. Mlynek, "Proposal for a magnetooptical beam splitter for atoms," Europhys. Lett. 21, 439-444 (1993).
[Crossref]

D. S. Weiss, B. C. Young, and S. Chu, "Precision-measurement of the photon recoil of an atom using atomic interferometry," Phys. Rev. Lett. 70, 2706-2709 (1993).
[Crossref] [PubMed]

T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel, and J. Mlynek, "Magnetooptical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
[Crossref] [PubMed]

1992 (1)

P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
[Crossref] [PubMed]

1991 (3)

D. Keith, C. Ekstrom, Q. Turchette, and D. E. Pritchard, "An interferometer for atoms," Phys. Rev. Lett. 66, 2693-2696 (1991).
[Crossref] [PubMed]

M. Kasevich and S. Chu, "Atomic interferometry using stimulated Raman transitions," Phys. Rev. Lett. 67, 181-184 (1991).
[Crossref] [PubMed]

M. Prentiss, N. Bigelow, M. S. Shahriar, and P. Hemmer, "Forces on three-level atoms including coherent population trapping," Opt. Lett. 16, 1695-1697 (1991).
[Crossref] [PubMed]

1990 (1)

M. S. Shahriar and P. R. Hemmer, "Direct excitation of microwave spin dressed-state using a laser-excited resonance laser interaction," Phys. Rev. Lett. 65, 1865-1868 (1990).
[Crossref] [PubMed]

1989 (1)

C. J. Borde, "Atomic interferometry with internal state labeling," Phys. Lett. A 140, 10-12 (1989).
[Crossref]

1982 (1)

P. M. Radmore and P. L. Knight, "Population trapping and dispersion in a 3-level system," J. Phys. B 15, 561-573 (1982).
[Crossref]

Adams, C. S.

T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel, and J. Mlynek, "Magnetooptical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
[Crossref] [PubMed]

T. Pfau, C. S. Adams, and J. Mlynek, "Proposal for a magnetooptical beam splitter for atoms," Europhys. Lett. 21, 439-444 (1993).
[Crossref]

Berggren, K.

K. Johnson, A. Chu, T. W. Lynn, K. Berggren, M. S. Shahriar, and M. G. Prentiss, "Demonstration of a nonmagnetic blazed-grating atomic beam splitter," Opt. Lett. 20, 1310-1312 (1995).
[Crossref] [PubMed]

P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
[Crossref] [PubMed]

Bhatia, P. S.

Y. Tan, J. Morzinski, A. V. Turukhin, P. S. Bhatia, and M. S. Shahriar, "Two-dimensional atomic interferometry for creation of nanostructures," Opt. Commun. 206, 141-147 (2002).
[Crossref]

Bigelow, N.

P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
[Crossref] [PubMed]

M. Prentiss, N. Bigelow, M. S. Shahriar, and P. Hemmer, "Forces on three-level atoms including coherent population trapping," Opt. Lett. 16, 1695-1697 (1991).
[Crossref] [PubMed]

Borde, C. J.

C. J. Borde, "Atomic interferometry with internal state labeling," Phys. Lett. A 140, 10-12 (1989).
[Crossref]

Bouyer, P.

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, "Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer," Phys. Rev. Lett. 81, 971-974 (1998).
[Crossref]

L. Gustavson, P. Bouyer, and M. A. Kasevich, "Precision rotation measurements with an atom interferometer gyroscope," Phys. Rev. Lett. 78, 2046-2049 (1997).
[Crossref]

Chu, A.

Chu, S.

D. S. Weiss, B. C. Young, and S. Chu, "Precision-measurement of the photon recoil of an atom using atomic interferometry," Phys. Rev. Lett. 70, 2706-2709 (1993).
[Crossref] [PubMed]

M. Kasevich and S. Chu, "Atomic interferometry using stimulated Raman transitions," Phys. Rev. Lett. 67, 181-184 (1991).
[Crossref] [PubMed]

Ekstrom, C.

D. Keith, C. Ekstrom, Q. Turchette, and D. E. Pritchard, "An interferometer for atoms," Phys. Rev. Lett. 66, 2693-2696 (1991).
[Crossref] [PubMed]

Gangat, A.

M. S. Shahriar, M. Jheeta, Y. Tan, P. Pradhan, and A. Gangat, "Continuously guided atomic interferometry using a single-zone optical excitation: theoretical analysis" Opt. Commun. 243, 183-201 (2004).
[Crossref]

Grimm, R.

Gustavson, L.

L. Gustavson, P. Bouyer, and M. A. Kasevich, "Precision rotation measurements with an atom interferometer gyroscope," Phys. Rev. Lett. 78, 2046-2049 (1997).
[Crossref]

Haritos, K. G.

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, "Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer," Phys. Rev. Lett. 81, 971-974 (1998).
[Crossref]

Hemmer, P.

M. S. Shahriar, P. Hemmer, D. P. Katz, A. Lee, and M. Prentiss, "Dark-state-based three-element vector model for the stimulated Raman interaction," Phys. Rev. A 55, 2272-2282 (1997).
[Crossref]

M. Prentiss, N. Bigelow, M. S. Shahriar, and P. Hemmer, "Forces on three-level atoms including coherent population trapping," Opt. Lett. 16, 1695-1697 (1991).
[Crossref] [PubMed]

Hemmer, P. R.

P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
[Crossref] [PubMed]

M. S. Shahriar and P. R. Hemmer, "Direct excitation of microwave spin dressed-state using a laser-excited resonance laser interaction," Phys. Rev. Lett. 65, 1865-1868 (1990).
[Crossref] [PubMed]

Janicke, U.

U. Janicke and M. Wilkens, "Atom motion in a magnetooptical field," Phys. Rev. A 50, 3265-3275 (1994).
[Crossref] [PubMed]

Jheeta, M.

M. S. Shahriar, M. Jheeta, Y. Tan, P. Pradhan, and A. Gangat, "Continuously guided atomic interferometry using a single-zone optical excitation: theoretical analysis" Opt. Commun. 243, 183-201 (2004).
[Crossref]

Johnson, K.

Kasevich, M.

M. Kasevich and S. Chu, "Atomic interferometry using stimulated Raman transitions," Phys. Rev. Lett. 67, 181-184 (1991).
[Crossref] [PubMed]

Kasevich, M. A.

T. J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, "Large area light-pulse atom interferometry," Phys. Rev. Lett. 85, 4498-4501 (2000).
[Crossref] [PubMed]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, "Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer," Phys. Rev. Lett. 81, 971-974 (1998).
[Crossref]

L. Gustavson, P. Bouyer, and M. A. Kasevich, "Precision rotation measurements with an atom interferometer gyroscope," Phys. Rev. Lett. 78, 2046-2049 (1997).
[Crossref]

Katz, D.

P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
[Crossref] [PubMed]

Katz, D. P.

M. S. Shahriar, P. Hemmer, D. P. Katz, A. Lee, and M. Prentiss, "Dark-state-based three-element vector model for the stimulated Raman interaction," Phys. Rev. A 55, 2272-2282 (1997).
[Crossref]

Keith, D.

D. Keith, C. Ekstrom, Q. Turchette, and D. E. Pritchard, "An interferometer for atoms," Phys. Rev. Lett. 66, 2693-2696 (1991).
[Crossref] [PubMed]

Knight, P. L.

P. M. Radmore and P. L. Knight, "Population trapping and dispersion in a 3-level system," J. Phys. B 15, 561-573 (1982).
[Crossref]

Kurtsiefer, C.

T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel, and J. Mlynek, "Magnetooptical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
[Crossref] [PubMed]

Lee, A.

M. S. Shahriar, P. Hemmer, D. P. Katz, A. Lee, and M. Prentiss, "Dark-state-based three-element vector model for the stimulated Raman interaction," Phys. Rev. A 55, 2272-2282 (1997).
[Crossref]

Lynn, T. W.

McGuirk, J. M.

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, "Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer," Phys. Rev. Lett. 81, 971-974 (1998).
[Crossref]

McGuirk, T. J.

T. J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, "Large area light-pulse atom interferometry," Phys. Rev. Lett. 85, 4498-4501 (2000).
[Crossref] [PubMed]

Mervis, J.

P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
[Crossref] [PubMed]

Mlynek, J.

T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel, and J. Mlynek, "Magnetooptical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
[Crossref] [PubMed]

T. Pfau, C. S. Adams, and J. Mlynek, "Proposal for a magnetooptical beam splitter for atoms," Europhys. Lett. 21, 439-444 (1993).
[Crossref]

Morzinski, J.

Y. Tan, J. Morzinski, A. V. Turukhin, P. S. Bhatia, and M. S. Shahriar, "Two-dimensional atomic interferometry for creation of nanostructures," Opt. Commun. 206, 141-147 (2002).
[Crossref]

Ovchinnikov, Yu. B.

Pfau, T.

T. Pfau, C. S. Adams, and J. Mlynek, "Proposal for a magnetooptical beam splitter for atoms," Europhys. Lett. 21, 439-444 (1993).
[Crossref]

T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel, and J. Mlynek, "Magnetooptical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
[Crossref] [PubMed]

Pradhan, P.

M. S. Shahriar, M. Jheeta, Y. Tan, P. Pradhan, and A. Gangat, "Continuously guided atomic interferometry using a single-zone optical excitation: theoretical analysis" Opt. Commun. 243, 183-201 (2004).
[Crossref]

Prentiss, M.

M. S. Shahriar, P. Hemmer, D. P. Katz, A. Lee, and M. Prentiss, "Dark-state-based three-element vector model for the stimulated Raman interaction," Phys. Rev. A 55, 2272-2282 (1997).
[Crossref]

P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
[Crossref] [PubMed]

M. Prentiss, N. Bigelow, M. S. Shahriar, and P. Hemmer, "Forces on three-level atoms including coherent population trapping," Opt. Lett. 16, 1695-1697 (1991).
[Crossref] [PubMed]

Prentiss, M. G.

Pritchard, D. E.

D. Keith, C. Ekstrom, Q. Turchette, and D. E. Pritchard, "An interferometer for atoms," Phys. Rev. Lett. 66, 2693-2696 (1991).
[Crossref] [PubMed]

Radmore, P. M.

P. M. Radmore and P. L. Knight, "Population trapping and dispersion in a 3-level system," J. Phys. B 15, 561-573 (1982).
[Crossref]

Shahriar, M. S.

M. S. Shahriar, M. Jheeta, Y. Tan, P. Pradhan, and A. Gangat, "Continuously guided atomic interferometry using a single-zone optical excitation: theoretical analysis" Opt. Commun. 243, 183-201 (2004).
[Crossref]

Y. Tan, J. Morzinski, A. V. Turukhin, P. S. Bhatia, and M. S. Shahriar, "Two-dimensional atomic interferometry for creation of nanostructures," Opt. Commun. 206, 141-147 (2002).
[Crossref]

M. S. Shahriar, P. Hemmer, D. P. Katz, A. Lee, and M. Prentiss, "Dark-state-based three-element vector model for the stimulated Raman interaction," Phys. Rev. A 55, 2272-2282 (1997).
[Crossref]

K. Johnson, A. Chu, T. W. Lynn, K. Berggren, M. S. Shahriar, and M. G. Prentiss, "Demonstration of a nonmagnetic blazed-grating atomic beam splitter," Opt. Lett. 20, 1310-1312 (1995).
[Crossref] [PubMed]

P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
[Crossref] [PubMed]

M. Prentiss, N. Bigelow, M. S. Shahriar, and P. Hemmer, "Forces on three-level atoms including coherent population trapping," Opt. Lett. 16, 1695-1697 (1991).
[Crossref] [PubMed]

M. S. Shahriar and P. R. Hemmer, "Direct excitation of microwave spin dressed-state using a laser-excited resonance laser interaction," Phys. Rev. Lett. 65, 1865-1868 (1990).
[Crossref] [PubMed]

Sigel, M.

T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel, and J. Mlynek, "Magnetooptical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
[Crossref] [PubMed]

Snadden, M. J.

T. J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, "Large area light-pulse atom interferometry," Phys. Rev. Lett. 85, 4498-4501 (2000).
[Crossref] [PubMed]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, "Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer," Phys. Rev. Lett. 81, 971-974 (1998).
[Crossref]

Soding, J.

Tan, Y.

M. S. Shahriar, M. Jheeta, Y. Tan, P. Pradhan, and A. Gangat, "Continuously guided atomic interferometry using a single-zone optical excitation: theoretical analysis" Opt. Commun. 243, 183-201 (2004).
[Crossref]

Y. Tan, J. Morzinski, A. V. Turukhin, P. S. Bhatia, and M. S. Shahriar, "Two-dimensional atomic interferometry for creation of nanostructures," Opt. Commun. 206, 141-147 (2002).
[Crossref]

Turchette, Q.

D. Keith, C. Ekstrom, Q. Turchette, and D. E. Pritchard, "An interferometer for atoms," Phys. Rev. Lett. 66, 2693-2696 (1991).
[Crossref] [PubMed]

Turukhin, A. V.

Y. Tan, J. Morzinski, A. V. Turukhin, P. S. Bhatia, and M. S. Shahriar, "Two-dimensional atomic interferometry for creation of nanostructures," Opt. Commun. 206, 141-147 (2002).
[Crossref]

Weiss, D. S.

D. S. Weiss, B. C. Young, and S. Chu, "Precision-measurement of the photon recoil of an atom using atomic interferometry," Phys. Rev. Lett. 70, 2706-2709 (1993).
[Crossref] [PubMed]

Wilkens, M.

U. Janicke and M. Wilkens, "Atom motion in a magnetooptical field," Phys. Rev. A 50, 3265-3275 (1994).
[Crossref] [PubMed]

Young, B. C.

D. S. Weiss, B. C. Young, and S. Chu, "Precision-measurement of the photon recoil of an atom using atomic interferometry," Phys. Rev. Lett. 70, 2706-2709 (1993).
[Crossref] [PubMed]

Europhys. Lett. (1)

T. Pfau, C. S. Adams, and J. Mlynek, "Proposal for a magnetooptical beam splitter for atoms," Europhys. Lett. 21, 439-444 (1993).
[Crossref]

J. Phys. B (1)

P. M. Radmore and P. L. Knight, "Population trapping and dispersion in a 3-level system," J. Phys. B 15, 561-573 (1982).
[Crossref]

Opt. Commun. (2)

Y. Tan, J. Morzinski, A. V. Turukhin, P. S. Bhatia, and M. S. Shahriar, "Two-dimensional atomic interferometry for creation of nanostructures," Opt. Commun. 206, 141-147 (2002).
[Crossref]

M. S. Shahriar, M. Jheeta, Y. Tan, P. Pradhan, and A. Gangat, "Continuously guided atomic interferometry using a single-zone optical excitation: theoretical analysis" Opt. Commun. 243, 183-201 (2004).
[Crossref]

Opt. Lett. (3)

Phys. Lett. A (1)

C. J. Borde, "Atomic interferometry with internal state labeling," Phys. Lett. A 140, 10-12 (1989).
[Crossref]

Phys. Rev. A (2)

U. Janicke and M. Wilkens, "Atom motion in a magnetooptical field," Phys. Rev. A 50, 3265-3275 (1994).
[Crossref] [PubMed]

M. S. Shahriar, P. Hemmer, D. P. Katz, A. Lee, and M. Prentiss, "Dark-state-based three-element vector model for the stimulated Raman interaction," Phys. Rev. A 55, 2272-2282 (1997).
[Crossref]

Phys. Rev. Lett. (9)

P. R. Hemmer, M. S. Shahriar, M. Prentiss, D. Katz, K. Berggren, J. Mervis, and N. Bigelow, "First observation of forces on three-level atoms in Raman resonant standing-wave optical fields," Phys. Rev. Lett. 68, 3148-3151 (1992).
[Crossref] [PubMed]

M. S. Shahriar and P. R. Hemmer, "Direct excitation of microwave spin dressed-state using a laser-excited resonance laser interaction," Phys. Rev. Lett. 65, 1865-1868 (1990).
[Crossref] [PubMed]

M. Kasevich and S. Chu, "Atomic interferometry using stimulated Raman transitions," Phys. Rev. Lett. 67, 181-184 (1991).
[Crossref] [PubMed]

L. Gustavson, P. Bouyer, and M. A. Kasevich, "Precision rotation measurements with an atom interferometer gyroscope," Phys. Rev. Lett. 78, 2046-2049 (1997).
[Crossref]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, "Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer," Phys. Rev. Lett. 81, 971-974 (1998).
[Crossref]

T. J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, "Large area light-pulse atom interferometry," Phys. Rev. Lett. 85, 4498-4501 (2000).
[Crossref] [PubMed]

D. Keith, C. Ekstrom, Q. Turchette, and D. E. Pritchard, "An interferometer for atoms," Phys. Rev. Lett. 66, 2693-2696 (1991).
[Crossref] [PubMed]

D. S. Weiss, B. C. Young, and S. Chu, "Precision-measurement of the photon recoil of an atom using atomic interferometry," Phys. Rev. Lett. 70, 2706-2709 (1993).
[Crossref] [PubMed]

T. Pfau, C. Kurtsiefer, C. S. Adams, M. Sigel, and J. Mlynek, "Magnetooptical beam splitter for atoms," Phys. Rev. Lett. 71, 3427-3430 (1993).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the BCI as compared with the CI. In the BCI, the atom passes through three laser pulses of a π 2 - π - π 2 arrangement. In the case of CI, the atom passes through one laser pulse of Gaussian shape. In each case, an external phase ϕ is applied by a glass plate that rotates along the x axis and the interferometer rotates around the z axis with an angular velocity Ω.

Fig. 2
Fig. 2

A, Trajectory of the split components in the CI generated from numerical simulation. B, the fringe amplitude α and the normalized effective area ( η A eff A 0 ) versus δ l l for the CI from the same numerical simulation. Inset, simulated fringe amplitude versus external phase ϕ at η = 0.955 .

Fig. 3
Fig. 3

A, Schematic illustration of the experimental setup of our CI. Collimated thermal Rb 85 atoms are first optically pumped to prepare an initial state. Next, the atoms pass through an interaction zone containing a bias magnetic field and two Raman pulses ( R 1 and R 2 ). A glass plate on a galvo scanner is inserted in the edge of R 1 . B, Schematic illustration of the Rb 85 transitions employed to realize the CI. Raman transition is realized between the ground states of 5 2 S 1 2 ( F = 3 ) and 5 2 S 1 2 ( F = 2 ) by two Raman beams R 1 and R 2 . To prepare an initial state, the F = 3 ground state is optically pumped (OP) to the F = 2 ground state by the state 5 2 P 3 2 ( F = 3 ) . The population of the F = 3 state is detected (D) by a cycling transition to the 5 2 P 3 2 ( F = 4 ) state by a photo multiplier tube (PMT).

Fig. 4
Fig. 4

A, Observed atomic interference fringes in the CI produced when a galvo scanner rotates a glass plate that produces a phase shift. B, the corresponding optical fringes in a Mach–Zehnder interferometer by use of the same scanner. Here, one full fringe corresponds to an optical path length of λ ( = 780 nm ) .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H = P z 2 2 m + H 0 + q r ( E 1 + E 2 ) ,
ψ eff [ α ̃ ( p , t ) β ̃ ( p + 2 k , t ) ]
H ̃ eff ( p ) = [ Δ 2 + Ω o 2 Ω o 2 Ω o 2 Δ 2 + Ω o 2 ] ,
Ψ ( t ) = d p exp { [ p 2 + ( p + 2 k ) 2 ] t 4 m } [ α ̃ ( p , t ) p , a + β ̃ ( p + 2 k , t ) p + 2 k , b ] .
ψ a ( z , t ) = d p α ̃ ( p , t ) exp ( i p z ) ,
ψ b ( z , t ) = d p β ̃ ( p + 2 k , t ) exp ( i p z ) ,
P ( a ) = d p α ̃ ( p , t ) 2 ,
P ( b ) = d p β ̃ ( p , t ) 2 .

Metrics