Abstract

Blackbody radiation is modified to enhance the blue spectrum with photonic boxes of 200nm. The modified blackbody radiation has two temperature-independent features. First, the enhanced blue light has the peak intensity pinched at 390 nm with an enhancement factor of over 5000. This peak wavelength corresponds to the resonance wavelength of the largest-number boxes. Second, the spectral width is 90 nm and is governed by the variation of the box size. The physics can be easily explained by the significantly enhanced density of states at a certain spectrum as a result of photonic boxes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pollard. Introduction to Solid-State Lighting (Wiley, New York, 2002), pp. 5-6.
  2. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band-structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
    [CrossRef] [PubMed]
  3. A. Genack and N. Garcia, "Observation of photon localization in a three-dimensional periodic array," Phys. Rev. Lett. 66, 2064-2067 (1991).
    [CrossRef] [PubMed]
  4. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282274-276 (1998).
    [CrossRef] [PubMed]
  5. T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 27, 654-655 (1999).
    [CrossRef]
  6. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
    [CrossRef] [PubMed]
  7. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
    [CrossRef]
  8. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
    [CrossRef] [PubMed]
  9. S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
    [CrossRef]
  10. D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley, Reading, Mass., 2000), pp. 584-586.
  11. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).
  12. W. C. Cheng, L. A. Wang, and C. Y Hsieh, "Phase masks fabricated by interferometric lithography for working in 248 nm wavelength," Microelectron. Eng. 67-68, 63-69 (2003).
    [CrossRef]
  13. S. Y. Lin, J. G. Fleming, E. Chow, and J. Bur, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-R2246 (2000).
    [CrossRef]
  14. B. Temelkuran, H. Altug, and E. Ozbay, "Experimental investigation of layer-by-layer metallic photonic crystals," IEE Proc. Optoelectron. 145, 409-414 (1998).
    [CrossRef]

2003 (2)

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

W. C. Cheng, L. A. Wang, and C. Y Hsieh, "Phase masks fabricated by interferometric lithography for working in 248 nm wavelength," Microelectron. Eng. 67-68, 63-69 (2003).
[CrossRef]

2002 (2)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

2000 (2)

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, and J. Bur, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

1999 (1)

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 27, 654-655 (1999).
[CrossRef]

1998 (2)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282274-276 (1998).
[CrossRef] [PubMed]

B. Temelkuran, H. Altug, and E. Ozbay, "Experimental investigation of layer-by-layer metallic photonic crystals," IEE Proc. Optoelectron. 145, 409-414 (1998).
[CrossRef]

1991 (2)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band-structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

A. Genack and N. Garcia, "Observation of photon localization in a three-dimensional periodic array," Phys. Rev. Lett. 66, 2064-2067 (1991).
[CrossRef] [PubMed]

Altug, H.

B. Temelkuran, H. Altug, and E. Ozbay, "Experimental investigation of layer-by-layer metallic photonic crystals," IEE Proc. Optoelectron. 145, 409-414 (1998).
[CrossRef]

Baba, T.

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 27, 654-655 (1999).
[CrossRef]

Biswas, R.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, E. Chow, and J. Bur, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

Cheng, D. K.

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley, Reading, Mass., 2000), pp. 584-586.

Cheng, W. C.

W. C. Cheng, L. A. Wang, and C. Y Hsieh, "Phase masks fabricated by interferometric lithography for working in 248 nm wavelength," Microelectron. Eng. 67-68, 63-69 (2003).
[CrossRef]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, and J. Bur, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282274-276 (1998).
[CrossRef] [PubMed]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, and J. Bur, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

Fukaya, N.

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 27, 654-655 (1999).
[CrossRef]

Garcia, N.

A. Genack and N. Garcia, "Observation of photon localization in a three-dimensional periodic array," Phys. Rev. Lett. 66, 2064-2067 (1991).
[CrossRef] [PubMed]

Genack, A.

A. Genack and N. Garcia, "Observation of photon localization in a three-dimensional periodic array," Phys. Rev. Lett. 66, 2064-2067 (1991).
[CrossRef] [PubMed]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band-structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Hietala, V.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282274-276 (1998).
[CrossRef] [PubMed]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Hsieh, C. Y

W. C. Cheng, L. A. Wang, and C. Y Hsieh, "Phase masks fabricated by interferometric lithography for working in 248 nm wavelength," Microelectron. Eng. 67-68, 63-69 (2003).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282274-276 (1998).
[CrossRef] [PubMed]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band-structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, and J. Bur, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282274-276 (1998).
[CrossRef] [PubMed]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Noda, S.

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Ozbay, E.

B. Temelkuran, H. Altug, and E. Ozbay, "Experimental investigation of layer-by-layer metallic photonic crystals," IEE Proc. Optoelectron. 145, 409-414 (1998).
[CrossRef]

Pollard, M.

M. Pollard. Introduction to Solid-State Lighting (Wiley, New York, 2002), pp. 5-6.

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Puscasu, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

Reif, F.

F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).

Temelkuran, B.

B. Temelkuran, H. Altug, and E. Ozbay, "Experimental investigation of layer-by-layer metallic photonic crystals," IEE Proc. Optoelectron. 145, 409-414 (1998).
[CrossRef]

Villeneuve, P. R.

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282274-276 (1998).
[CrossRef] [PubMed]

Wang, L. A.

W. C. Cheng, L. A. Wang, and C. Y Hsieh, "Phase masks fabricated by interferometric lithography for working in 248 nm wavelength," Microelectron. Eng. 67-68, 63-69 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band-structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Yonekura, J.

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 27, 654-655 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Electron. Lett. (1)

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 27, 654-655 (1999).
[CrossRef]

IEE Proc. Optoelectron. (1)

B. Temelkuran, H. Altug, and E. Ozbay, "Experimental investigation of layer-by-layer metallic photonic crystals," IEE Proc. Optoelectron. 145, 409-414 (1998).
[CrossRef]

Microelectron. Eng. (1)

W. C. Cheng, L. A. Wang, and C. Y Hsieh, "Phase masks fabricated by interferometric lithography for working in 248 nm wavelength," Microelectron. Eng. 67-68, 63-69 (2003).
[CrossRef]

Nature (2)

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (1)

S. Y. Lin, J. G. Fleming, E. Chow, and J. Bur, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal," Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band-structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

A. Genack and N. Garcia, "Observation of photon localization in a three-dimensional periodic array," Phys. Rev. Lett. 66, 2064-2067 (1991).
[CrossRef] [PubMed]

Science (1)

S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282274-276 (1998).
[CrossRef] [PubMed]

Other (3)

D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Addison-Wesley, Reading, Mass., 2000), pp. 584-586.

F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965).

M. Pollard. Introduction to Solid-State Lighting (Wiley, New York, 2002), pp. 5-6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Density of states of the photonic boxes. The unique box size will exhibit a delta function, and the various sizes of boxes will broaden the density of states.

Fig. 2
Fig. 2

Fabrication steps of the photonic boxes.

Fig. 3
Fig. 3

AFM image of the fabricated photonic boxes.

Fig. 4
Fig. 4

Measured spectra of radiation from heated photonic boxes at different temperatures and a theoretical fitting with Eq. (1) at T = 983 K .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

μ ( ν ) d ν = [ V p g p ( ν ) + V c g c ( ν ) ] d ν × n ¯ s h ν = [ V p g p ( ν ) + V c 8 π c 3 ν 2 ] h ν exp ( h ν k T ) 1 d ν ,
η = [ V p g p ( ν ) + V c 8 π c 3 ν 2 ] V c 8 π c 3 ν 2 = V p g p ( ν ) V c 8 π c 3 ν 2 + 1 .
[ V p g p ( ν 1 ) + V c 8 π c 3 ν 1 2 ] h ν 1 exp ( h ν 1 k T ) 1 6.5 × V c 8 π c 3 h ν 2 2 h ν 2 exp ( h ν 2 k T ) 1 ,
V c 8 π c 3 ν 2 2 h ν 2 exp ( h ν 2 k T ) 1 > 1000 × V c 8 π c 3 ν 1 2 h ν 1 exp ( h ν 1 k T ) 1
[ V p g p ( ν 1 ) + V c 8 π c 3 ν 1 2 ] h ν 1 exp ( h ν 1 k T ) 1 > 6500 × V c 8 π c 3 ν 1 2 h ν 1 exp ( h ν 1 k T ) 1 .

Metrics