Abstract

We have developed new silicon-on-insulator waveguide designs for simultaneously achieving both low-loss optical confinement and electrical contacts, and we present a design methodology based on calculating the Bloch modes of such segmented waveguides. With this formalism, waveguides are designed in a single thin layer of silicon-on-insulator to achieve both optical confinement and minimal insertion loss. Waveguides were also fabricated and tested, and the measured data were found to closely agree with theoretical predictions, demonstrating input insertion loss and propagation loss better than 0.1 dB and 16dBcm, respectively.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
    [CrossRef]
  2. B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, "Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers," Appl. Phys. Lett. 83, 4689-4691 (2003).
    [CrossRef]
  3. Z. Weissman and A. Hardy, "Modes of periodically segmented waveguides," J. Lightwave Technol. 11, 1831-1838 (1993).
    [CrossRef]
  4. D. Nir, Z. Weissman, S. Ruschin, and A. Hardy, "Periodically segmented wave-guides in Ti:LiNbO3," Opt. Lett. 19, 1732-1734 (1994).
    [CrossRef] [PubMed]
  5. Z. Weissman, "Evanescent field sensors with periodically segmented waveguides," Appl. Opt. 36, 1218-1222 (1997).
    [CrossRef] [PubMed]
  6. T. Baehr-Jones, M. Hochberg, and A. Scherer, "An analytic method for calculating substrate leakage in dielectric waveguides," J. Lightwave Technol. , submitted for publication.
  7. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).
  8. A. Taflove and S. C. Hagness, Computational Electrodynamis (Artech, 2000).
  9. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins U. Press, 1996).
  10. Z. Weissman and A. Hardy, "2-D Mode tapering via tapered channel waveguide segmentation," Electron. Lett. 28, 1514-1516 (1992).
    [CrossRef]

2004

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[CrossRef]

2003

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, "Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers," Appl. Phys. Lett. 83, 4689-4691 (2003).
[CrossRef]

1997

1994

1993

Z. Weissman and A. Hardy, "Modes of periodically segmented waveguides," J. Lightwave Technol. 11, 1831-1838 (1993).
[CrossRef]

1992

Z. Weissman and A. Hardy, "2-D Mode tapering via tapered channel waveguide segmentation," Electron. Lett. 28, 1514-1516 (1992).
[CrossRef]

Baehr-Jones, T.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[CrossRef]

T. Baehr-Jones, M. Hochberg, and A. Scherer, "An analytic method for calculating substrate leakage in dielectric waveguides," J. Lightwave Technol. , submitted for publication.

Dalton, L.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, "Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers," Appl. Phys. Lett. 83, 4689-4691 (2003).
[CrossRef]

Golub, G. H.

G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins U. Press, 1996).

Gunn, C.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, "Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers," Appl. Phys. Lett. 83, 4689-4691 (2003).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamis (Artech, 2000).

Hardy, A.

D. Nir, Z. Weissman, S. Ruschin, and A. Hardy, "Periodically segmented wave-guides in Ti:LiNbO3," Opt. Lett. 19, 1732-1734 (1994).
[CrossRef] [PubMed]

Z. Weissman and A. Hardy, "Modes of periodically segmented waveguides," J. Lightwave Technol. 11, 1831-1838 (1993).
[CrossRef]

Z. Weissman and A. Hardy, "2-D Mode tapering via tapered channel waveguide segmentation," Electron. Lett. 28, 1514-1516 (1992).
[CrossRef]

Hochberg, M.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[CrossRef]

T. Baehr-Jones, M. Hochberg, and A. Scherer, "An analytic method for calculating substrate leakage in dielectric waveguides," J. Lightwave Technol. , submitted for publication.

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

Lawson, R.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, "Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers," Appl. Phys. Lett. 83, 4689-4691 (2003).
[CrossRef]

Maune, B.

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, "Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers," Appl. Phys. Lett. 83, 4689-4691 (2003).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

Nir, D.

Ruschin, S.

Scherer, A.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[CrossRef]

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, "Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers," Appl. Phys. Lett. 83, 4689-4691 (2003).
[CrossRef]

T. Baehr-Jones, M. Hochberg, and A. Scherer, "An analytic method for calculating substrate leakage in dielectric waveguides," J. Lightwave Technol. , submitted for publication.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamis (Artech, 2000).

Van Loan, C. F.

G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins U. Press, 1996).

Walker, C.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[CrossRef]

Weissman, Z.

Z. Weissman, "Evanescent field sensors with periodically segmented waveguides," Appl. Opt. 36, 1218-1222 (1997).
[CrossRef] [PubMed]

D. Nir, Z. Weissman, S. Ruschin, and A. Hardy, "Periodically segmented wave-guides in Ti:LiNbO3," Opt. Lett. 19, 1732-1734 (1994).
[CrossRef] [PubMed]

Z. Weissman and A. Hardy, "Modes of periodically segmented waveguides," J. Lightwave Technol. 11, 1831-1838 (1993).
[CrossRef]

Z. Weissman and A. Hardy, "2-D Mode tapering via tapered channel waveguide segmentation," Electron. Lett. 28, 1514-1516 (1992).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

Appl. Opt.

Appl. Phys. Lett.

T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
[CrossRef]

B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, "Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers," Appl. Phys. Lett. 83, 4689-4691 (2003).
[CrossRef]

Electron. Lett.

Z. Weissman and A. Hardy, "2-D Mode tapering via tapered channel waveguide segmentation," Electron. Lett. 28, 1514-1516 (1992).
[CrossRef]

J. Lightwave Technol.

Z. Weissman and A. Hardy, "Modes of periodically segmented waveguides," J. Lightwave Technol. 11, 1831-1838 (1993).
[CrossRef]

T. Baehr-Jones, M. Hochberg, and A. Scherer, "An analytic method for calculating substrate leakage in dielectric waveguides," J. Lightwave Technol. , submitted for publication.

Opt. Lett.

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995).

A. Taflove and S. C. Hagness, Computational Electrodynamis (Artech, 2000).

G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins U. Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Diagram of the field pattern of the fundamental optical mode; contours of E are plotted, starting at 10% of the maximum field value and incremented by 10% for each contour. (b) The dispersion diagram consists of the effective index plotted against the free-space wavelength.

Fig. 2
Fig. 2

Logical diagram of the planar layout of a segmented waveguide. For comparison, a nonsegmented waveguide is also diagrammed, in a configuration suitable for butt coupling into the segmented waveguide.

Fig. 3
Fig. 3

(a) Dispersion diagram of both the series 0 segmented waveguide and the normal, unsegmented waveguide. (b) Modal patterns of the Bloch mode, with contours of E plotted, starting at 10% of the maximum value and with contour increments of 10%. The first plot (a) is on a z plane that intersects the middle of a segment. (c) A plot on a horizontal plane that intersects the silicon layer halfway through. For clarity, four periods of the waveguide are shown.

Fig. 4
Fig. 4

Scanning electron micrograph of the series 0 segmented waveguide.

Fig. 5
Fig. 5

(a) and (b) Measured coupling insertion loss for the segmented waveguide designs studied, in decibels, plotted against the free-space wavelength in micrometers. Series 0, in (a), shows simulated data, which are presented for comparison.

Fig. 6
Fig. 6

Measured waveguide loss in decibels per centimeter as a function of the free-space wavelength for various segmented waveguide designs.

Tables (1)

Tables Icon

Table 1 Listing of Segmented Waveguide Series Studied and Essential Parameters at 1.48 μ m a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

× 1 n ( r ) 2 × H = w 2 c 2 H .
Ψ ( w ) = ϕ ( r ) exp ( i β z ) .

Metrics