Abstract

We discuss the study of three chalcogenide glasses of high third-order nonlinear electric susceptibility, AsSe4,GeSe4, and GeAsSe8. We measured the strain optical coefficients, and we determined dispersion equations of the refractive index from previously published measurements. From these data, we performed a theoretical study of a new scheme for third-harmonic generation in a glass where phase matching is created by a photoelastic effect. A complete symmetry analysis based on Curie principle allowed us to define the configuration of polarization of the interacting waves, leading to a nonzero cubic effective coefficient. The generated third-harmonic intensity is then calculated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman, A. Villeneuve, J. S. Aitchison, and C. N. Ironside, Nonlinear Integrated Optics and All-Optical Waveguide Switching in Semiconductors, North Atlantic Treaty Organization Advanced Study Institutes Series, Series 3: High Technology 3 (Fabrication, Properties, and Applications of Low-Dimensional Semiconductors), 415-449 (1995).
  2. M. Asobe, H. Kobayashi, H. Itoh, and T. Kanamori, "Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber," Opt. Lett. 18, 1056-1058 (1993).
    [CrossRef]
  3. H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, "Third-order nonlinear optical properties of chalcogenide glasses," Appl. Phys. Lett. 70, 925-927 (1997).
    [CrossRef]
  4. F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, "Non linear optical properties of chalcogenide glasses measured by Z-scan," J. Non-Cryst. Solids 274, 232-237 (2000).
    [CrossRef]
  5. G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, "Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques," Opt. Commun. 199, 425-433 (2001).
    [CrossRef]
  6. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly non linear Ge-As-Se and Ge-As-S-Se glasse for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
    [CrossRef]
  7. T. M. Monro, and D. J. Richardson, "Holey optical fibers: fundamental properties and device applications," C. R. Phys. 4, 175-186 (2003).
    [CrossRef]
  8. L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "As-S and As-Se based photonic band gap fiber for IR laser transmission," Opt. Express 11, 3455-3460 (2003).
    [CrossRef] [PubMed]
  9. R. E Slusher, G. Lenz, J. Hodelin, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  10. P. S. Banks, M. D. Feit, and M. D. Perry, "High intensity third-harmonic generation in beta barium borate through second-order and third-order susceptibilities," Opt. Lett. 24, 4-6 (1999).
    [CrossRef]
  11. J. P. Fève, B. Boulanger, and Y. Guillien, "Efficient energy conversion for cubic third-harmonic generation that is phase-matched in KTiOPO4," Opt. Lett. 25, 1373-1375 (2000).
    [CrossRef]
  12. F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
    [CrossRef]
  13. C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1446 (2001).
    [CrossRef]
  14. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2002).
  15. P. C. Anderson and A. K. Varshneya, "Stress-optic coefficient of Ge-As-Se chalcogenide glasses," J. Non-Cryst. Solids 168, 125-131 (1994).
    [CrossRef]
  16. L. G. Aio, A. M. Efimov, and V. F. Kokorina, "Refractive index of chalcogenide glasses over a wide range of compositions," J. Non-Cryst. Solids 27, 299-307 (1978).
    [CrossRef]
  17. B. Boulanger and J. Zyss, "Non-linear optical properties," in International Tables for Crystallography, Vol. D: Physical Properties of Crystals, A.Authier, ed. (Kluwer Academic, 2003), pp 178-219.
  18. B. Boulanger, J. P. Fève, and G. Marnier, "Field factor formalism for the study of the tensorial symmetry of the 4-wave non-linear optical parametric interactions in uniaxial and biaxial crystal classes," Phys. Rev. E 48, 4730-4751 (1993).
    [CrossRef]
  19. J. F. Nye, Physical Properties of Crystals (Clarendon, 1957).
  20. P. N. Butcher and D. Cotter, The Elements of Non Linear Optics, Cambridge Series in Modern Optics (Cambridge U. Press, 1990).
    [CrossRef]
  21. K. Tanaka, N. Nemoto, and H. Nasu, "Photoinduced phenomena in Na2S-GeS2 glasses," Jpn. J. Appl. Phys., Part 1 42, 6748-6752 (2003).
    [CrossRef]

2004 (1)

2003 (3)

T. M. Monro, and D. J. Richardson, "Holey optical fibers: fundamental properties and device applications," C. R. Phys. 4, 175-186 (2003).
[CrossRef]

L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "As-S and As-Se based photonic band gap fiber for IR laser transmission," Opt. Express 11, 3455-3460 (2003).
[CrossRef] [PubMed]

K. Tanaka, N. Nemoto, and H. Nasu, "Photoinduced phenomena in Na2S-GeS2 glasses," Jpn. J. Appl. Phys., Part 1 42, 6748-6752 (2003).
[CrossRef]

2002 (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly non linear Ge-As-Se and Ge-As-S-Se glasse for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

2001 (2)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1446 (2001).
[CrossRef]

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, "Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques," Opt. Commun. 199, 425-433 (2001).
[CrossRef]

2000 (2)

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, "Non linear optical properties of chalcogenide glasses measured by Z-scan," J. Non-Cryst. Solids 274, 232-237 (2000).
[CrossRef]

J. P. Fève, B. Boulanger, and Y. Guillien, "Efficient energy conversion for cubic third-harmonic generation that is phase-matched in KTiOPO4," Opt. Lett. 25, 1373-1375 (2000).
[CrossRef]

1999 (1)

1998 (1)

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

1997 (1)

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, "Third-order nonlinear optical properties of chalcogenide glasses," Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

1994 (1)

P. C. Anderson and A. K. Varshneya, "Stress-optic coefficient of Ge-As-Se chalcogenide glasses," J. Non-Cryst. Solids 168, 125-131 (1994).
[CrossRef]

1993 (2)

B. Boulanger, J. P. Fève, and G. Marnier, "Field factor formalism for the study of the tensorial symmetry of the 4-wave non-linear optical parametric interactions in uniaxial and biaxial crystal classes," Phys. Rev. E 48, 4730-4751 (1993).
[CrossRef]

M. Asobe, H. Kobayashi, H. Itoh, and T. Kanamori, "Laser-diode-driven ultrafast all-optical switching by using highly nonlinear chalcogenide glass fiber," Opt. Lett. 18, 1056-1058 (1993).
[CrossRef]

1978 (1)

L. G. Aio, A. M. Efimov, and V. F. Kokorina, "Refractive index of chalcogenide glasses over a wide range of compositions," J. Non-Cryst. Solids 27, 299-307 (1978).
[CrossRef]

Aggarwal, I. D.

Aio, L. G.

L. G. Aio, A. M. Efimov, and V. F. Kokorina, "Refractive index of chalcogenide glasses over a wide range of compositions," J. Non-Cryst. Solids 27, 299-307 (1978).
[CrossRef]

Aitchison, J. S.

G. I. Stegeman, A. Villeneuve, J. S. Aitchison, and C. N. Ironside, Nonlinear Integrated Optics and All-Optical Waveguide Switching in Semiconductors, North Atlantic Treaty Organization Advanced Study Institutes Series, Series 3: High Technology 3 (Fabrication, Properties, and Applications of Low-Dimensional Semiconductors), 415-449 (1995).

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly non linear Ge-As-Se and Ge-As-S-Se glasse for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

Anderson, P. C.

P. C. Anderson and A. K. Varshneya, "Stress-optic coefficient of Ge-As-Se chalcogenide glasses," J. Non-Cryst. Solids 168, 125-131 (1994).
[CrossRef]

Asobe, M.

Banks, P. S.

Barthélémy, A.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1446 (2001).
[CrossRef]

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, "Non linear optical properties of chalcogenide glasses measured by Z-scan," J. Non-Cryst. Solids 274, 232-237 (2000).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Boudebs, G.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, "Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques," Opt. Commun. 199, 425-433 (2001).
[CrossRef]

Boulanger, B.

J. P. Fève, B. Boulanger, and Y. Guillien, "Efficient energy conversion for cubic third-harmonic generation that is phase-matched in KTiOPO4," Opt. Lett. 25, 1373-1375 (2000).
[CrossRef]

B. Boulanger, J. P. Fève, and G. Marnier, "Field factor formalism for the study of the tensorial symmetry of the 4-wave non-linear optical parametric interactions in uniaxial and biaxial crystal classes," Phys. Rev. E 48, 4730-4751 (1993).
[CrossRef]

B. Boulanger and J. Zyss, "Non-linear optical properties," in International Tables for Crystallography, Vol. D: Physical Properties of Crystals, A.Authier, ed. (Kluwer Academic, 2003), pp 178-219.

Butcher, P. N.

P. N. Butcher and D. Cotter, The Elements of Non Linear Optics, Cambridge Series in Modern Optics (Cambridge U. Press, 1990).
[CrossRef]

Cotter, D.

P. N. Butcher and D. Cotter, The Elements of Non Linear Optics, Cambridge Series in Modern Optics (Cambridge U. Press, 1990).
[CrossRef]

Couderc, V.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1446 (2001).
[CrossRef]

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, "Non linear optical properties of chalcogenide glasses measured by Z-scan," J. Non-Cryst. Solids 274, 232-237 (2000).
[CrossRef]

De Angelis, C.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Efimov, A. M.

L. G. Aio, A. M. Efimov, and V. F. Kokorina, "Refractive index of chalcogenide glasses over a wide range of compositions," J. Non-Cryst. Solids 27, 299-307 (1978).
[CrossRef]

Feit, M. D.

Fève, J. P.

B. Boulanger, J. P. Fève, and G. Marnier, "Field factor formalism for the study of the tensorial symmetry of the 4-wave non-linear optical parametric interactions in uniaxial and biaxial crystal classes," Phys. Rev. E 48, 4730-4751 (1993).
[CrossRef]

Fujiwara, S.

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, "Third-order nonlinear optical properties of chalcogenide glasses," Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

Guillien, Y.

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly non linear Ge-As-Se and Ge-As-S-Se glasse for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

Hirao, K.

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, "Third-order nonlinear optical properties of chalcogenide glasses," Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

Hodelin, J.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly non linear Ge-As-Se and Ge-As-S-Se glasse for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

Ironside, C. N.

G. I. Stegeman, A. Villeneuve, J. S. Aitchison, and C. N. Ironside, Nonlinear Integrated Optics and All-Optical Waveguide Switching in Semiconductors, North Atlantic Treaty Organization Advanced Study Institutes Series, Series 3: High Technology 3 (Fabrication, Properties, and Applications of Low-Dimensional Semiconductors), 415-449 (1995).

Itoh, H.

Kanamori, T.

Kanbara, H.

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, "Third-order nonlinear optical properties of chalcogenide glasses," Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

Kobayashi, H.

Kokorina, V. F.

L. G. Aio, A. M. Efimov, and V. F. Kokorina, "Refractive index of chalcogenide glasses over a wide range of compositions," J. Non-Cryst. Solids 27, 299-307 (1978).
[CrossRef]

LeNeindre, L.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Lenz, G.

Lucas, J.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1446 (2001).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Marnier, G.

B. Boulanger, J. P. Fève, and G. Marnier, "Field factor formalism for the study of the tensorial symmetry of the 4-wave non-linear optical parametric interactions in uniaxial and biaxial crystal classes," Phys. Rev. E 48, 4730-4751 (1993).
[CrossRef]

Monro, T. M.

T. M. Monro, and D. J. Richardson, "Holey optical fibers: fundamental properties and device applications," C. R. Phys. 4, 175-186 (2003).
[CrossRef]

Nasu, H.

K. Tanaka, N. Nemoto, and H. Nasu, "Photoinduced phenomena in Na2S-GeS2 glasses," Jpn. J. Appl. Phys., Part 1 42, 6748-6752 (2003).
[CrossRef]

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, "Third-order nonlinear optical properties of chalcogenide glasses," Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

Nemoto, N.

K. Tanaka, N. Nemoto, and H. Nasu, "Photoinduced phenomena in Na2S-GeS2 glasses," Jpn. J. Appl. Phys., Part 1 42, 6748-6752 (2003).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Clarendon, 1957).

P. Fève, J.

Perry, M. D.

Quémard, C.

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1446 (2001).
[CrossRef]

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, "Non linear optical properties of chalcogenide glasses measured by Z-scan," J. Non-Cryst. Solids 274, 232-237 (2000).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Richardson, D. J.

T. M. Monro, and D. J. Richardson, "Holey optical fibers: fundamental properties and device applications," C. R. Phys. 4, 175-186 (2003).
[CrossRef]

Sanchez, F.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, "Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques," Opt. Commun. 199, 425-433 (2001).
[CrossRef]

Sanghera, J. S.

Shaw, L. B.

Slusher, R. E

Smektala, F.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, "Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques," Opt. Commun. 199, 425-433 (2001).
[CrossRef]

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1446 (2001).
[CrossRef]

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, "Non linear optical properties of chalcogenide glasses measured by Z-scan," J. Non-Cryst. Solids 274, 232-237 (2000).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, A. Villeneuve, J. S. Aitchison, and C. N. Ironside, Nonlinear Integrated Optics and All-Optical Waveguide Switching in Semiconductors, North Atlantic Treaty Organization Advanced Study Institutes Series, Series 3: High Technology 3 (Fabrication, Properties, and Applications of Low-Dimensional Semiconductors), 415-449 (1995).

Tanaka, K.

K. Tanaka, N. Nemoto, and H. Nasu, "Photoinduced phenomena in Na2S-GeS2 glasses," Jpn. J. Appl. Phys., Part 1 42, 6748-6752 (2003).
[CrossRef]

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, "Third-order nonlinear optical properties of chalcogenide glasses," Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

Troles, J.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, "Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques," Opt. Commun. 199, 425-433 (2001).
[CrossRef]

Varshneya, A. K.

P. C. Anderson and A. K. Varshneya, "Stress-optic coefficient of Ge-As-Se chalcogenide glasses," J. Non-Cryst. Solids 168, 125-131 (1994).
[CrossRef]

Villeneuve, A.

G. I. Stegeman, A. Villeneuve, J. S. Aitchison, and C. N. Ironside, Nonlinear Integrated Optics and All-Optical Waveguide Switching in Semiconductors, North Atlantic Treaty Organization Advanced Study Institutes Series, Series 3: High Technology 3 (Fabrication, Properties, and Applications of Low-Dimensional Semiconductors), 415-449 (1995).

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly non linear Ge-As-Se and Ge-As-S-Se glasse for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2002).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2002).

Zyss, J.

B. Boulanger and J. Zyss, "Non-linear optical properties," in International Tables for Crystallography, Vol. D: Physical Properties of Crystals, A.Authier, ed. (Kluwer Academic, 2003), pp 178-219.

Appl. Phys. Lett. (1)

H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, and K. Hirao, "Third-order nonlinear optical properties of chalcogenide glasses," Appl. Phys. Lett. 70, 925-927 (1997).
[CrossRef]

C. R. Phys. (1)

T. M. Monro, and D. J. Richardson, "Holey optical fibers: fundamental properties and device applications," C. R. Phys. 4, 175-186 (2003).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, "Highly non linear Ge-As-Se and Ge-As-S-Se glasse for all optical switching," IEEE Photonics Technol. Lett. 14, 822-824 (2002).
[CrossRef]

J. Non-Cryst. Solids (4)

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, "Chalcogenide glasses with large non-linear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998).
[CrossRef]

P. C. Anderson and A. K. Varshneya, "Stress-optic coefficient of Ge-As-Se chalcogenide glasses," J. Non-Cryst. Solids 168, 125-131 (1994).
[CrossRef]

L. G. Aio, A. M. Efimov, and V. F. Kokorina, "Refractive index of chalcogenide glasses over a wide range of compositions," J. Non-Cryst. Solids 27, 299-307 (1978).
[CrossRef]

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, "Non linear optical properties of chalcogenide glasses measured by Z-scan," J. Non-Cryst. Solids 274, 232-237 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

C. Quémard, F. Smektala, V. Couderc, A. Barthélémy, and J. Lucas, "Chalcogenide glasses with high non linear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1446 (2001).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

K. Tanaka, N. Nemoto, and H. Nasu, "Photoinduced phenomena in Na2S-GeS2 glasses," Jpn. J. Appl. Phys., Part 1 42, 6748-6752 (2003).
[CrossRef]

Opt. Commun. (1)

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, "Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques," Opt. Commun. 199, 425-433 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E (1)

B. Boulanger, J. P. Fève, and G. Marnier, "Field factor formalism for the study of the tensorial symmetry of the 4-wave non-linear optical parametric interactions in uniaxial and biaxial crystal classes," Phys. Rev. E 48, 4730-4751 (1993).
[CrossRef]

Other (5)

J. F. Nye, Physical Properties of Crystals (Clarendon, 1957).

P. N. Butcher and D. Cotter, The Elements of Non Linear Optics, Cambridge Series in Modern Optics (Cambridge U. Press, 1990).
[CrossRef]

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2002).

B. Boulanger and J. Zyss, "Non-linear optical properties," in International Tables for Crystallography, Vol. D: Physical Properties of Crystals, A.Authier, ed. (Kluwer Academic, 2003), pp 178-219.

G. I. Stegeman, A. Villeneuve, J. S. Aitchison, and C. N. Ironside, Nonlinear Integrated Optics and All-Optical Waveguide Switching in Semiconductors, North Atlantic Treaty Organization Advanced Study Institutes Series, Series 3: High Technology 3 (Fabrication, Properties, and Applications of Low-Dimensional Semiconductors), 415-449 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ellipsometric measurements of Ge Se 4 as a function of the applied mechanical strain S zz . The filled and open points are relative to the measured transmitted intensity I X and I Y , respectively. The solid and dashed curves are the interpolations of the experimental measurements.

Fig. 2
Fig. 2

Ellipsometric measurements of GeAs Se 8 as a function of the applied mechanical strain S zz . The filled and open points are relative to the measured transmitted intensity I X and I Y , respectively. The solid and dashed curves are the interpolations of the experimental measurements.

Fig. 3
Fig. 3

Ellipsometric measurements of As Se 4 as a function of the applied mechanical strain S zz . The filled and open points are relative to the measured transmitted intensity I X and I Y , respectively. The solid and dashed curves are the interpolations of the experimental measurements.

Fig. 4
Fig. 4

Calculated mechanical strain S zz II for the achievement of Type-II phase matching. Solid curve, GeAs Se 8 ; dash-dotted curve, Ge Se 4 ; dashed curve, As Se 4 .

Fig. 5
Fig. 5

Type-II third-harmonic intensity generated in As Se 4 as a function of the mechanical strain near phase matching. The third-order effective coefficient is 10 18 m 2 V 2 , and the glass length is 3 cm. The fundamental beam is at λ = 11 μ m with an incident intensity of 150 MW cm 2 .

Fig. 6
Fig. 6

Type-II third-harmonic intensity generated in As Se 4 as a function of the mechanical strain far from phase matching. The third-order effective coefficient is 10 18 m 2 V 2 , and the glass length is 3 cm. The fundamental beam is at λ = 11 μ m with an incident intensity of 150 MW cm 2 .

Tables (3)

Tables Icon

Table 1 Strain-optic Coefficients of Ge Se 4 , GeAs Se 8 and As Se 4 Glasses a

Tables Icon

Table 2 Coefficients of the Sellmeier Equations for Ge Se 4 , GeAs Se 3 , and As Se 4 Glasses

Tables Icon

Table 3 Phase-matching Conditions for Type-II THG in Ge Se 4 , GeAs Se 8 , and As Se 4 Glasses under Strain

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

i ( x i n ) 2 + i j k l ( P i j k l S k l x i x j ) = 1 .
x 1 2 ( 1 n 2 + P 12 S 33 ) + x 2 2 ( 1 n 2 + P 12 S 33 ) + x 3 2 ( 1 n 2 + P 11 S 33 ) = 1 .
n o = n x = n y n 1 2 n 3 P 12 S z z ,
n e = n z n 1 2 n 3 P 11 S z z ,
Δ n = n e n o B S z z ,
B = 1 2 n 3 ( P 12 P 11 ) .
S z z = m g L d ,
I X ( L ) = I inc cos 2 ( π λ B S z z L ) ,
I Y ( L ) = I inc sin 2 ( π λ B S z z L ) ,
P 11 ( λ ) P 12 ( λ ) B ( λ ) n 3 ( λ ) .
3 ω c n e ( 3 ω ) ω c n o ( ω ) ω c n o ( ω ) ω c n o ( ω ) = 0 ,
3 ω c n e ( 3 ω ) ω c n o ( ω ) ω c n o ( ω ) ω c n e ( ω ) = 0 ,
3 ω c n e ( 3 ω ) ω c n o ( ω ) ω c n e ( ω ) ω c n e ( ω ) = 0 .
χ eff ( 3 ) I , II , III = i j k l χ i j k l F i j k l I , II , III .
F i j k l I = e i e ( 3 ω ) e j o ( ω ) e k o ( ω ) e l o ( ω ) ,
F i j k l II = e i e ( 3 ω ) e j o ( ω ) e k o ( ω ) e l e ( ω ) ,
F i j k l III = e i e ( 3 ω ) e j o ( ω ) e k e ( ω ) e l e ( ω ) .
e x o = sin φ , e y o = cos φ , e z o = 0 ,
e x e = 0 , e y e = 0 , e z e = 1 ,
G M S = G M G S .
χ z z z z
χ x x x x = χ y y y y = χ x x y y + χ x y x y + χ x y x y
χ x x y y = χ x y x y = χ x y y x = χ y y x x = χ y x y x = χ y x x y
χ x x z z = χ x z x z = χ x z z x = χ z z x x = χ z x z x = χ z x x z = χ y y z z = χ y z y z = χ y z z y = χ z z y y = χ z y z y = χ z y y z .
χ eff ( 3 ) I , III ( φ ) = 0 ,
χ eff ( 3 ) II ( φ ) = χ z x x z ( sin 2 φ + cos 2 φ ) = χ z x x z .
S z z II ( ω , 3 ω ) = 2 [ n ( 3 ω ) n ( ω ) ] P 11 ( 3 ω ) n 3 ( 3 ω ) P 11 ( ω ) + 2 P 12 ( ω ) 3 n 3 ( ω ) .
n 2 ( λ ) = a b λ 2 + c λ 2 d .
I ( 3 ω , L ) = 4 μ 0 ϵ 0 [ π χ eff ( 3 ) - II L λ ω ] 2 [ sinc ( Δ k II L 2 ) ] 2 3 n e ( 3 ω ) [ n o ( ω ) ] 2 n e ( ω ) [ I ( 3 ω , 0 ) 3 ] .

Metrics