Abstract

The criteria for lasing in a dielectric sphere surrounded by an active medium are given. They are presented in simple analytical form and confirmed by numeric calculations of the amplitudes of the morphology-dependent resonances in spontaneous emission spectra. The determined lasing threshold of this novel-type laser is compared with that of a conventional spherical laser with an optically active internal layer. The diverse advantages of a laser based on the gain of the evanescent part of a whispering-gallery mode are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yukawa, S. Arnold, and K. Miyano, "Microcavity effect of dyes absorbed on a levitated droplet," Phys. Rev. A 60, 2491-2496 (1999).
    [CrossRef]
  2. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
    [CrossRef] [PubMed]
  3. K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
    [CrossRef]
  4. T. Takahashi, K. Fujiwara, S. Matsuo, and H. Misawa, "Excitation energy transfer between dye molecules in lasing microparticles," J. Photochem. Photobiol. A 120, 135-140 (1999).
    [CrossRef]
  5. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," New J. Phys. 3, 14.1-14.14 (2001).
    [CrossRef]
  6. V. V. Datsyuk and I. A. Izmailov, "Optics of microdroplets," Phys. Usp. 44, 1061-1073 (2001).
    [CrossRef]
  7. A. N. Oraevsky, "Waves of whispering gallery," Kvant. Elektron. (Moscow) 32, 377-400 (2002).
    [CrossRef]
  8. S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002).
    [CrossRef]
  9. V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, "Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter," Opt. Commun. 107, 41-48 (1994).
    [CrossRef]
  10. M. L. Gorodetsky and V. S. Ilchenko, "Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999).
    [CrossRef]
  11. S. Lange and G. Scweiger, "Structural resonances in the inelastic scattering efficiency of molecules in the vicinity of spherical dielectric particles," J. Opt. Soc. Am. B 14, 1931-1937 (1997).
    [CrossRef]
  12. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Qwhispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
    [CrossRef]
  13. A. N. Oraevskii, M. O. Scully, and V. L. Velichanskii, "Quantum dot laser," Quantum Electron. 28, 203-208 (1998).
    [CrossRef]
  14. M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
    [CrossRef]
  15. T. A. Brun and H. Wang, "Coupling nanocrystals to a high-Q silica microsphere: entanglement in quantum dots via photon exchange," Phys. Rev. A 61, 032307 (2000).
    [CrossRef]
  16. X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, "Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors," Opt. Lett. 25, 1600-1602 (2000).
    [CrossRef]
  17. M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinsky, and W. Langbein, "Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission," Nano Lett. 1, 309-314 (2001).
    [CrossRef]
  18. L. Yang and K. J. Vahala, "Gain functionalization of silica microresonators," Opt. Lett. 28, 592-594 (2003).
    [CrossRef] [PubMed]
  19. H. Fujiwara and K. Sasaki, "Lasing of a microsphere in dye solution," Jpn. J. Appl. Phys., Part 1 38, 5101-5104 (1999).
    [CrossRef]
  20. K. An and H.-J. Moon, "Laser oscillations with pumping-independent ultrahigh cavity quality factors in evanescent-wave-coupled-gain microsphere dye lasers," J. Phys. Soc. Jpn. 72, 773-776 (2003).
    [CrossRef]
  21. Y. Xu, R. K. Lee, and A. Yariv, "Quantum analysis and the classical analysis of spontaneous emission in a microcavity," Phys. Rev. A 61, 033807 (2000).
    [CrossRef]
  22. H. T. Dung, L. Knöll, and D.-G. Welsch, "Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity," Phys. Rev. A 62, 053804 (2000).
    [CrossRef]
  23. In this paper, the time dependence of the field is exp(-iomegat).
  24. S. C. Ching, H. M. Lai, and K. Young, "Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift," J. Opt. Soc. Am. B 4, 2004-2009 (1987).
    [CrossRef]
  25. H. Chew, "Transition rates of atoms near spherical surfaces," J. Chem. Phys. 87, 1355-1360 (1987).
    [CrossRef]
  26. G. Roll, T. Kaiser, and G. Schweiger, "Eigenmodes of spherical dielectric cavities: coupling of internal and external rays," J. Opt. Soc. Am. A 16, 882-895 (1999).
    [CrossRef]
  27. H. M. Lai, P. T. Leung, and K. Young, "Electromagnetic decay into a narrow resonance in an optical cavity," Phys. Rev. A 37, 1597-1606 (1988).
    [CrossRef] [PubMed]
  28. V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration," Phys. Rev. A 59, 2996-3014 (1999).
    [CrossRef]
  29. S.-S. Yi and O. M. Stafsudd, "Observation of lossless radiative modes of a dielectric sphere," J. Appl. Phys. 86, 3684-3698 (1999).
    [CrossRef]
  30. Y. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of Siberian Branch of the Russian Academy of Sciences, 1999).
  31. W. Acker, A. Serpengüzel, R. Chang, and S. Hill, "Stimulated Raman scattering of fuel droplets. Chemical concentration and size determination," Appl. Phys. B: Photophys. Laser Chem. 51, 9-16 (1990).
    [CrossRef]
  32. A. L. Huston, H.-B. Lin, J. D. Eversole, and A. J. Campillo, "Nonlinear Mie scattering: electrostrictive coupling of light to droplet acoustic modes," Opt. Lett. 15, 1176-1178 (1990).
    [CrossRef] [PubMed]
  33. L. A. Vainshtein, Open Resonators and Open Waveguides (Golem, 1969).
  34. Yu. M. Tsipenyuk, "Probe body in open resonator," in High-Power Electronics, Issue 4, P.L.Kapitsa and L.A.Vainstein, eds. (Nauka, 1965). pp. 173-176.
  35. E. N. Alyrzaev, M. L. Gorodetsky, V. S. Ilchenko, and A. A. Savchenkov, "The measurement of low optical losses in liquids by method of immersed microsphere resonator," Vestnik MGU, Series 3, No. 5 (Moscow State University, Moscow, 2000), pp. 55-56.
  36. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonators in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
    [CrossRef] [PubMed]
  37. G. Chen, D. Q. Chowdhury, R. K. Chang, and W.-F. Hsieh, "Laser-induced radiation leakage from microdroplets," J. Opt. Soc. Am. B 10, 620-632 (1993).
    [CrossRef]
  38. J.-Z. Zhang and R. K. Chang, "Generation and suppression of stimulated Brillouin scattering in single liquid droplets," J. Opt. Soc. Am. B 6, 151-153 (1989).
    [CrossRef]
  39. A. Serpenguzel, J. C. Swindal, R. K. Chang, and W. P. Acker, "Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering," Appl. Opt. 31, 3543-3551 (1992).
    [CrossRef] [PubMed]
  40. V. E. Zuev, A. A. Zemlyanov, and Yu. D. Koputin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, 1989).
  41. Yu. A. Bykovskii, E. A. Manykin, I. E. Nakhutin, and Yu. G. Rubezhnyii, "Combination scattering of light on arbitrary vibrations of shape of a liquid spherical particle," Zh. Prikl. Spektrosk. 23, 866-871 (1975).
  42. A. S. Kwok and R. K. Chang, "Suppression of lasing by stimulated Raman scattering in microdroplets," Opt. Lett. 18, 1597-1599 (1993).
    [CrossRef] [PubMed]
  43. H.-B. Lin, J. D. Eversole, and A. J. Campillo, "Spectral properties of lasing microdroplets," J. Opt. Soc. Am. B 9, 43-50 (1992).
    [CrossRef]
  44. A. J. Campillo, J. D. Eversole, and H.-B. Lin, "Cavity quantum electrodynamic enhancement of spontaneous and stimulated emission in microdroplets," Mod. Phys. Lett. B 6, 447-457 (1992).
    [CrossRef]
  45. J. R. Buck and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A 67, 033806 (2003).
    [CrossRef]
  46. H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
    [CrossRef] [PubMed]

2003 (3)

K. An and H.-J. Moon, "Laser oscillations with pumping-independent ultrahigh cavity quality factors in evanescent-wave-coupled-gain microsphere dye lasers," J. Phys. Soc. Jpn. 72, 773-776 (2003).
[CrossRef]

J. R. Buck and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A 67, 033806 (2003).
[CrossRef]

L. Yang and K. J. Vahala, "Gain functionalization of silica microresonators," Opt. Lett. 28, 592-594 (2003).
[CrossRef] [PubMed]

2002 (2)

A. N. Oraevsky, "Waves of whispering gallery," Kvant. Elektron. (Moscow) 32, 377-400 (2002).
[CrossRef]

S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002).
[CrossRef]

2001 (3)

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," New J. Phys. 3, 14.1-14.14 (2001).
[CrossRef]

V. V. Datsyuk and I. A. Izmailov, "Optics of microdroplets," Phys. Usp. 44, 1061-1073 (2001).
[CrossRef]

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinsky, and W. Langbein, "Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission," Nano Lett. 1, 309-314 (2001).
[CrossRef]

2000 (5)

Y. Xu, R. K. Lee, and A. Yariv, "Quantum analysis and the classical analysis of spontaneous emission in a microcavity," Phys. Rev. A 61, 033807 (2000).
[CrossRef]

H. T. Dung, L. Knöll, and D.-G. Welsch, "Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity," Phys. Rev. A 62, 053804 (2000).
[CrossRef]

T. A. Brun and H. Wang, "Coupling nanocrystals to a high-Q silica microsphere: entanglement in quantum dots via photon exchange," Phys. Rev. A 61, 032307 (2000).
[CrossRef]

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, "Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors," Opt. Lett. 25, 1600-1602 (2000).
[CrossRef]

1999 (8)

M. L. Gorodetsky and V. S. Ilchenko, "Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999).
[CrossRef]

G. Roll, T. Kaiser, and G. Schweiger, "Eigenmodes of spherical dielectric cavities: coupling of internal and external rays," J. Opt. Soc. Am. A 16, 882-895 (1999).
[CrossRef]

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration," Phys. Rev. A 59, 2996-3014 (1999).
[CrossRef]

S.-S. Yi and O. M. Stafsudd, "Observation of lossless radiative modes of a dielectric sphere," J. Appl. Phys. 86, 3684-3698 (1999).
[CrossRef]

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

H. Fujiwara and K. Sasaki, "Lasing of a microsphere in dye solution," Jpn. J. Appl. Phys., Part 1 38, 5101-5104 (1999).
[CrossRef]

H. Yukawa, S. Arnold, and K. Miyano, "Microcavity effect of dyes absorbed on a levitated droplet," Phys. Rev. A 60, 2491-2496 (1999).
[CrossRef]

T. Takahashi, K. Fujiwara, S. Matsuo, and H. Misawa, "Excitation energy transfer between dye molecules in lasing microparticles," J. Photochem. Photobiol. A 120, 135-140 (1999).
[CrossRef]

1998 (2)

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Qwhispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
[CrossRef]

A. N. Oraevskii, M. O. Scully, and V. L. Velichanskii, "Quantum dot laser," Quantum Electron. 28, 203-208 (1998).
[CrossRef]

1997 (2)

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

S. Lange and G. Scweiger, "Structural resonances in the inelastic scattering efficiency of molecules in the vicinity of spherical dielectric particles," J. Opt. Soc. Am. B 14, 1931-1937 (1997).
[CrossRef]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
[CrossRef] [PubMed]

1994 (1)

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, "Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter," Opt. Commun. 107, 41-48 (1994).
[CrossRef]

1993 (2)

1992 (3)

1990 (3)

A. L. Huston, H.-B. Lin, J. D. Eversole, and A. J. Campillo, "Nonlinear Mie scattering: electrostrictive coupling of light to droplet acoustic modes," Opt. Lett. 15, 1176-1178 (1990).
[CrossRef] [PubMed]

W. Acker, A. Serpengüzel, R. Chang, and S. Hill, "Stimulated Raman scattering of fuel droplets. Chemical concentration and size determination," Appl. Phys. B: Photophys. Laser Chem. 51, 9-16 (1990).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonators in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (1)

H. M. Lai, P. T. Leung, and K. Young, "Electromagnetic decay into a narrow resonance in an optical cavity," Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

1987 (2)

1975 (1)

Yu. A. Bykovskii, E. A. Manykin, I. E. Nakhutin, and Yu. G. Rubezhnyii, "Combination scattering of light on arbitrary vibrations of shape of a liquid spherical particle," Zh. Prikl. Spektrosk. 23, 866-871 (1975).

Acker, W.

W. Acker, A. Serpengüzel, R. Chang, and S. Hill, "Stimulated Raman scattering of fuel droplets. Chemical concentration and size determination," Appl. Phys. B: Photophys. Laser Chem. 51, 9-16 (1990).
[CrossRef]

Acker, W. P.

Alyrzaev, E. N.

E. N. Alyrzaev, M. L. Gorodetsky, V. S. Ilchenko, and A. A. Savchenkov, "The measurement of low optical losses in liquids by method of immersed microsphere resonator," Vestnik MGU, Series 3, No. 5 (Moscow State University, Moscow, 2000), pp. 55-56.

An, K.

K. An and H.-J. Moon, "Laser oscillations with pumping-independent ultrahigh cavity quality factors in evanescent-wave-coupled-gain microsphere dye lasers," J. Phys. Soc. Jpn. 72, 773-776 (2003).
[CrossRef]

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Arnold, S.

H. Yukawa, S. Arnold, and K. Miyano, "Microcavity effect of dyes absorbed on a levitated droplet," Phys. Rev. A 60, 2491-2496 (1999).
[CrossRef]

Artemyev, M. V.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinsky, and W. Langbein, "Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission," Nano Lett. 1, 309-314 (2001).
[CrossRef]

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonators in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

Brun, T. A.

T. A. Brun and H. Wang, "Coupling nanocrystals to a high-Q silica microsphere: entanglement in quantum dots via photon exchange," Phys. Rev. A 61, 032307 (2000).
[CrossRef]

Buck, J. R.

J. R. Buck and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A 67, 033806 (2003).
[CrossRef]

Bykovskii, Yu. A.

Yu. A. Bykovskii, E. A. Manykin, I. E. Nakhutin, and Yu. G. Rubezhnyii, "Combination scattering of light on arbitrary vibrations of shape of a liquid spherical particle," Zh. Prikl. Spektrosk. 23, 866-871 (1975).

Campillo, A. J.

Chang, R.

W. Acker, A. Serpengüzel, R. Chang, and S. Hill, "Stimulated Raman scattering of fuel droplets. Chemical concentration and size determination," Appl. Phys. B: Photophys. Laser Chem. 51, 9-16 (1990).
[CrossRef]

Chang, R. K.

Chen, G.

Chew, H.

H. Chew, "Transition rates of atoms near spherical surfaces," J. Chem. Phys. 87, 1355-1360 (1987).
[CrossRef]

Ching, S. C.

Chough, Y.-T.

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Chowdhury, D. Q.

Datsyuk, V. V.

V. V. Datsyuk and I. A. Izmailov, "Optics of microdroplets," Phys. Usp. 44, 1061-1073 (2001).
[CrossRef]

Ducloy, M.

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration," Phys. Rev. A 59, 2996-3014 (1999).
[CrossRef]

Dung, H. T.

H. T. Dung, L. Knöll, and D.-G. Welsch, "Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity," Phys. Rev. A 62, 053804 (2000).
[CrossRef]

Eversole, J. D.

Fan, X.

Fujiwara, H.

H. Fujiwara and K. Sasaki, "Lasing of a microsphere in dye solution," Jpn. J. Appl. Phys., Part 1 38, 5101-5104 (1999).
[CrossRef]

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

Fujiwara, K.

S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002).
[CrossRef]

T. Takahashi, K. Fujiwara, S. Matsuo, and H. Misawa, "Excitation energy transfer between dye molecules in lasing microparticles," J. Photochem. Photobiol. A 120, 135-140 (1999).
[CrossRef]

Furusawa, A.

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Qwhispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
[CrossRef]

Geints, Y. E.

Y. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of Siberian Branch of the Russian Academy of Sciences, 1999).

Georgiades, N. P.

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Qwhispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
[CrossRef]

Gorodetsky, M. L.

M. L. Gorodetsky and V. S. Ilchenko, "Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999).
[CrossRef]

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, "Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter," Opt. Commun. 107, 41-48 (1994).
[CrossRef]

E. N. Alyrzaev, M. L. Gorodetsky, V. S. Ilchenko, and A. A. Savchenkov, "The measurement of low optical losses in liquids by method of immersed microsphere resonator," Vestnik MGU, Series 3, No. 5 (Moscow State University, Moscow, 2000), pp. 55-56.

Hare, J.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," New J. Phys. 3, 14.1-14.14 (2001).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
[CrossRef] [PubMed]

Hill, S.

W. Acker, A. Serpengüzel, R. Chang, and S. Hill, "Stimulated Raman scattering of fuel droplets. Chemical concentration and size determination," Appl. Phys. B: Photophys. Laser Chem. 51, 9-16 (1990).
[CrossRef]

Hill, S. C.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonators in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

Hsieh, W.-F.

Huston, A. L.

Ilchenko, V. S.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," New J. Phys. 3, 14.1-14.14 (2001).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, "Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes," J. Opt. Soc. Am. B 16, 147-154 (1999).
[CrossRef]

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Qwhispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
[CrossRef]

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, "Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter," Opt. Commun. 107, 41-48 (1994).
[CrossRef]

E. N. Alyrzaev, M. L. Gorodetsky, V. S. Ilchenko, and A. A. Savchenkov, "The measurement of low optical losses in liquids by method of immersed microsphere resonator," Vestnik MGU, Series 3, No. 5 (Moscow State University, Moscow, 2000), pp. 55-56.

Izmailov, I. A.

V. V. Datsyuk and I. A. Izmailov, "Optics of microdroplets," Phys. Usp. 44, 1061-1073 (2001).
[CrossRef]

Jaschinsky, H.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinsky, and W. Langbein, "Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission," Nano Lett. 1, 309-314 (2001).
[CrossRef]

Juodkazis, S.

S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002).
[CrossRef]

Kabanov, A. M.

Y. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of Siberian Branch of the Russian Academy of Sciences, 1999).

Kaiser, T.

Kimble, H. J.

J. R. Buck and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A 67, 033806 (2003).
[CrossRef]

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Qwhispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
[CrossRef]

Klimov, V. V.

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration," Phys. Rev. A 59, 2996-3014 (1999).
[CrossRef]

Knöll, L.

H. T. Dung, L. Knöll, and D.-G. Welsch, "Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity," Phys. Rev. A 62, 053804 (2000).
[CrossRef]

Koputin, Yu. D.

V. E. Zuev, A. A. Zemlyanov, and Yu. D. Koputin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, 1989).

Kwok, A. S.

Lacey, S.

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonators in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, and K. Young, "Electromagnetic decay into a narrow resonance in an optical cavity," Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

S. C. Ching, H. M. Lai, and K. Young, "Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift," J. Opt. Soc. Am. B 4, 2004-2009 (1987).
[CrossRef]

Langbein, W.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinsky, and W. Langbein, "Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission," Nano Lett. 1, 309-314 (2001).
[CrossRef]

Lange, S.

Lee, R. K.

Y. Xu, R. K. Lee, and A. Yariv, "Quantum analysis and the classical analysis of spontaneous emission in a microcavity," Phys. Rev. A 61, 033807 (2000).
[CrossRef]

Lefèvre-Seguin, V.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," New J. Phys. 3, 14.1-14.14 (2001).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
[CrossRef] [PubMed]

Letokhov, V. S.

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration," Phys. Rev. A 59, 2996-3014 (1999).
[CrossRef]

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonators in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, and K. Young, "Electromagnetic decay into a narrow resonance in an optical cavity," Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

Lin, H.-B.

Lonergan, M. C.

Long, R.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," New J. Phys. 3, 14.1-14.14 (2001).
[CrossRef]

Manykin, E. A.

Yu. A. Bykovskii, E. A. Manykin, I. E. Nakhutin, and Yu. G. Rubezhnyii, "Combination scattering of light on arbitrary vibrations of shape of a liquid spherical particle," Zh. Prikl. Spektrosk. 23, 866-871 (1975).

Masuhara, H.

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

Matsuo, S.

S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002).
[CrossRef]

T. Takahashi, K. Fujiwara, S. Matsuo, and H. Misawa, "Excitation energy transfer between dye molecules in lasing microparticles," J. Photochem. Photobiol. A 120, 135-140 (1999).
[CrossRef]

Misawa, H.

S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002).
[CrossRef]

T. Takahashi, K. Fujiwara, S. Matsuo, and H. Misawa, "Excitation energy transfer between dye molecules in lasing microparticles," J. Photochem. Photobiol. A 120, 135-140 (1999).
[CrossRef]

Miyano, K.

H. Yukawa, S. Arnold, and K. Miyano, "Microcavity effect of dyes absorbed on a levitated droplet," Phys. Rev. A 60, 2491-2496 (1999).
[CrossRef]

Moon, H.-J.

K. An and H.-J. Moon, "Laser oscillations with pumping-independent ultrahigh cavity quality factors in evanescent-wave-coupled-gain microsphere dye lasers," J. Phys. Soc. Jpn. 72, 773-776 (2003).
[CrossRef]

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Nakhutin, I. E.

Yu. A. Bykovskii, E. A. Manykin, I. E. Nakhutin, and Yu. G. Rubezhnyii, "Combination scattering of light on arbitrary vibrations of shape of a liquid spherical particle," Zh. Prikl. Spektrosk. 23, 866-871 (1975).

Oraevskii, A. N.

A. N. Oraevskii, M. O. Scully, and V. L. Velichanskii, "Quantum dot laser," Quantum Electron. 28, 203-208 (1998).
[CrossRef]

Oraevsky, A. N.

A. N. Oraevsky, "Waves of whispering gallery," Kvant. Elektron. (Moscow) 32, 377-400 (2002).
[CrossRef]

Palinginis, P.

Pelton, M.

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

Pogodaev, V. A.

Y. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of Siberian Branch of the Russian Academy of Sciences, 1999).

Raimond, J.-M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
[CrossRef] [PubMed]

Roll, G.

Rubezhnyii, Yu. G.

Yu. A. Bykovskii, E. A. Manykin, I. E. Nakhutin, and Yu. G. Rubezhnyii, "Combination scattering of light on arbitrary vibrations of shape of a liquid spherical particle," Zh. Prikl. Spektrosk. 23, 866-871 (1975).

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
[CrossRef] [PubMed]

Sasaki, K.

H. Fujiwara and K. Sasaki, "Lasing of a microsphere in dye solution," Jpn. J. Appl. Phys., Part 1 38, 5101-5104 (1999).
[CrossRef]

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

Savchenkov, A. A.

E. N. Alyrzaev, M. L. Gorodetsky, V. S. Ilchenko, and A. A. Savchenkov, "The measurement of low optical losses in liquids by method of immersed microsphere resonator," Vestnik MGU, Series 3, No. 5 (Moscow State University, Moscow, 2000), pp. 55-56.

Schweiger, G.

Scully, M. O.

A. N. Oraevskii, M. O. Scully, and V. L. Velichanskii, "Quantum dot laser," Quantum Electron. 28, 203-208 (1998).
[CrossRef]

Scweiger, G.

Serpenguzel, A.

Serpengüzel, A.

W. Acker, A. Serpengüzel, R. Chang, and S. Hill, "Stimulated Raman scattering of fuel droplets. Chemical concentration and size determination," Appl. Phys. B: Photophys. Laser Chem. 51, 9-16 (1990).
[CrossRef]

Stafsudd, O. M.

S.-S. Yi and O. M. Stafsudd, "Observation of lossless radiative modes of a dielectric sphere," J. Appl. Phys. 86, 3684-3698 (1999).
[CrossRef]

Swindal, J. C.

Takahashi, T.

S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002).
[CrossRef]

T. Takahashi, K. Fujiwara, S. Matsuo, and H. Misawa, "Excitation energy transfer between dye molecules in lasing microparticles," J. Photochem. Photobiol. A 120, 135-140 (1999).
[CrossRef]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
[CrossRef] [PubMed]

Tsipenyuk, Yu. M.

Yu. M. Tsipenyuk, "Probe body in open resonator," in High-Power Electronics, Issue 4, P.L.Kapitsa and L.A.Vainstein, eds. (Nauka, 1965). pp. 173-176.

Vahala, K. J.

Vainshtein, L. A.

L. A. Vainshtein, Open Resonators and Open Waveguides (Golem, 1969).

Velichanskii, V. L.

A. N. Oraevskii, M. O. Scully, and V. L. Velichanskii, "Quantum dot laser," Quantum Electron. 28, 203-208 (1998).
[CrossRef]

Vernooy, D. W.

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Qwhispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
[CrossRef]

von Klitzing, W.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," New J. Phys. 3, 14.1-14.14 (2001).
[CrossRef]

Vyatchanin, S. P.

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, "Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter," Opt. Commun. 107, 41-48 (1994).
[CrossRef]

Wang, H.

T. A. Brun and H. Wang, "Coupling nanocrystals to a high-Q silica microsphere: entanglement in quantum dots via photon exchange," Phys. Rev. A 61, 032307 (2000).
[CrossRef]

X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, "Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors," Opt. Lett. 25, 1600-1602 (2000).
[CrossRef]

Wannemacher, R.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinsky, and W. Langbein, "Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission," Nano Lett. 1, 309-314 (2001).
[CrossRef]

Welsch, D.-G.

H. T. Dung, L. Knöll, and D.-G. Welsch, "Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity," Phys. Rev. A 62, 053804 (2000).
[CrossRef]

Woggon, U.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinsky, and W. Langbein, "Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission," Nano Lett. 1, 309-314 (2001).
[CrossRef]

Xu, Y.

Y. Xu, R. K. Lee, and A. Yariv, "Quantum analysis and the classical analysis of spontaneous emission in a microcavity," Phys. Rev. A 61, 033807 (2000).
[CrossRef]

Yamamoto, Y.

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

Yang, L.

Yariv, A.

Y. Xu, R. K. Lee, and A. Yariv, "Quantum analysis and the classical analysis of spontaneous emission in a microcavity," Phys. Rev. A 61, 033807 (2000).
[CrossRef]

Yi, S.-S.

S.-S. Yi and O. M. Stafsudd, "Observation of lossless radiative modes of a dielectric sphere," J. Appl. Phys. 86, 3684-3698 (1999).
[CrossRef]

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonators in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, and K. Young, "Electromagnetic decay into a narrow resonance in an optical cavity," Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

S. C. Ching, H. M. Lai, and K. Young, "Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift," J. Opt. Soc. Am. B 4, 2004-2009 (1987).
[CrossRef]

Yukawa, H.

H. Yukawa, S. Arnold, and K. Miyano, "Microcavity effect of dyes absorbed on a levitated droplet," Phys. Rev. A 60, 2491-2496 (1999).
[CrossRef]

Zemlyanov, A. A.

Y. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of Siberian Branch of the Russian Academy of Sciences, 1999).

V. E. Zuev, A. A. Zemlyanov, and Yu. D. Koputin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, 1989).

Zhang, J.-Z.

Zuev, V. E.

V. E. Zuev, A. A. Zemlyanov, and Yu. D. Koputin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, 1989).

Y. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of Siberian Branch of the Russian Academy of Sciences, 1999).

Appl. Opt. (1)

Appl. Phys. B: Photophys. Laser Chem. (1)

W. Acker, A. Serpengüzel, R. Chang, and S. Hill, "Stimulated Raman scattering of fuel droplets. Chemical concentration and size determination," Appl. Phys. B: Photophys. Laser Chem. 51, 9-16 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

J. Appl. Phys. (2)

S. Juodkazis, K. Fujiwara, T. Takahashi, S. Matsuo, and H. Misawa, "Morphology-dependent resonant laser emission of dye-doped ellipsoidal microcavity," J. Appl. Phys. 91, 916-921 (2002).
[CrossRef]

S.-S. Yi and O. M. Stafsudd, "Observation of lossless radiative modes of a dielectric sphere," J. Appl. Phys. 86, 3684-3698 (1999).
[CrossRef]

J. Chem. Phys. (1)

H. Chew, "Transition rates of atoms near spherical surfaces," J. Chem. Phys. 87, 1355-1360 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (6)

J. Photochem. Photobiol. A (1)

T. Takahashi, K. Fujiwara, S. Matsuo, and H. Misawa, "Excitation energy transfer between dye molecules in lasing microparticles," J. Photochem. Photobiol. A 120, 135-140 (1999).
[CrossRef]

J. Phys. Soc. Jpn. (1)

K. An and H.-J. Moon, "Laser oscillations with pumping-independent ultrahigh cavity quality factors in evanescent-wave-coupled-gain microsphere dye lasers," J. Phys. Soc. Jpn. 72, 773-776 (2003).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

H. Fujiwara and K. Sasaki, "Lasing of a microsphere in dye solution," Jpn. J. Appl. Phys., Part 1 38, 5101-5104 (1999).
[CrossRef]

Kvant. Elektron. (1)

A. N. Oraevsky, "Waves of whispering gallery," Kvant. Elektron. (Moscow) 32, 377-400 (2002).
[CrossRef]

Mod. Phys. Lett. (1)

A. J. Campillo, J. D. Eversole, and H.-B. Lin, "Cavity quantum electrodynamic enhancement of spontaneous and stimulated emission in microdroplets," Mod. Phys. Lett. B 6, 447-457 (1992).
[CrossRef]

Nano Lett. (1)

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinsky, and W. Langbein, "Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission," Nano Lett. 1, 309-314 (2001).
[CrossRef]

New J. Phys. (1)

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, "Tunable whispering gallery modes for spectroscopy and CQED experiments," New J. Phys. 3, 14.1-14.14 (2001).
[CrossRef]

Opt. Commun. (1)

V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, "Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter," Opt. Commun. 107, 41-48 (1994).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (11)

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, "Cavity QED with high-Qwhispering gallery modes," Phys. Rev. A 57, R2293-R2296 (1998).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, "Quantum analysis and the classical analysis of spontaneous emission in a microcavity," Phys. Rev. A 61, 033807 (2000).
[CrossRef]

H. T. Dung, L. Knöll, and D.-G. Welsch, "Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity," Phys. Rev. A 62, 053804 (2000).
[CrossRef]

H. Yukawa, S. Arnold, and K. Miyano, "Microcavity effect of dyes absorbed on a levitated droplet," Phys. Rev. A 60, 2491-2496 (1999).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. A 54, R1777-R1780 (1996).
[CrossRef] [PubMed]

M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999).
[CrossRef]

T. A. Brun and H. Wang, "Coupling nanocrystals to a high-Q silica microsphere: entanglement in quantum dots via photon exchange," Phys. Rev. A 61, 032307 (2000).
[CrossRef]

J. R. Buck and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A 67, 033806 (2003).
[CrossRef]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonators in microdroplets," Phys. Rev. A 41, 5187-5198 (1990).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, and K. Young, "Electromagnetic decay into a narrow resonance in an optical cavity," Phys. Rev. A 37, 1597-1606 (1988).
[CrossRef] [PubMed]

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration," Phys. Rev. A 59, 2996-3014 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical microcavity laser based on evanescent-wave-coupled gain," Phys. Rev. Lett. 85, 3161-3164 (2000).
[CrossRef] [PubMed]

Phys. Usp. (1)

V. V. Datsyuk and I. A. Izmailov, "Optics of microdroplets," Phys. Usp. 44, 1061-1073 (2001).
[CrossRef]

Quantum Electron. (1)

A. N. Oraevskii, M. O. Scully, and V. L. Velichanskii, "Quantum dot laser," Quantum Electron. 28, 203-208 (1998).
[CrossRef]

Zh. Prikl. Spektrosk. (1)

Yu. A. Bykovskii, E. A. Manykin, I. E. Nakhutin, and Yu. G. Rubezhnyii, "Combination scattering of light on arbitrary vibrations of shape of a liquid spherical particle," Zh. Prikl. Spektrosk. 23, 866-871 (1975).

Other (6)

V. E. Zuev, A. A. Zemlyanov, and Yu. D. Koputin, Nonlinear Optics of the Atmosphere (Gidrometeoizdat, 1989).

Y. E. Geints, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of Siberian Branch of the Russian Academy of Sciences, 1999).

L. A. Vainshtein, Open Resonators and Open Waveguides (Golem, 1969).

Yu. M. Tsipenyuk, "Probe body in open resonator," in High-Power Electronics, Issue 4, P.L.Kapitsa and L.A.Vainstein, eds. (Nauka, 1965). pp. 173-176.

E. N. Alyrzaev, M. L. Gorodetsky, V. S. Ilchenko, and A. A. Savchenkov, "The measurement of low optical losses in liquids by method of immersed microsphere resonator," Vestnik MGU, Series 3, No. 5 (Moscow State University, Moscow, 2000), pp. 55-56.

In this paper, the time dependence of the field is exp(-iomegat).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scheme of the spherical laser and (b) negative photo of its prototype. (a) Index f = 3 denotes a transparent dielectric, 1 and 2 are the same surrounding medium with possible gain in layer 2, a 1 = a 2 n 3 r n 1 r is the radius of the external caustic.[26] (b) Fluorescence of a 12 μ m radius dye-doped PMMA sphere immersed in water and pumped by a 440 mW cw laser at a 532 nm wavelength.

Fig. 2
Fig. 2

Average rate A A h versus n i for emission with the MDR frequencies of the (a) TM 240 1 and (b) TE 240 1 WGMs (see text). The solid curves were calculated by use of the formulas of Eqs. (A1, A2, A3, A4, A5, A6, A7, A8). Curves 1 describe the emission of an active sphere in water, n 3 = 1.5 + ı n i ; curves 2 relate to the emission of a passive sphere surrounded by an active water layer, n 3 = 1.5 + ı 10 9 , n 2 = 1.33 + ı n i , a 1 a 2 0.13 a 2 . The vertical dashed lines show the lasing threshold values given by Eq. (16) at a = a 2 , y = m r with factors of Eq. (9) [(a), right vertical], Eq. (10) [(b), right vertical], and Eq. (11) (left verticals).

Fig. 3
Fig. 3

Dependences of factors θ ex on the parameter y calculated for the TM 240 1 (curve 1), TE 240 1 (curve 2), and TE 232 2 (curve 3) modes of the silica microsphere immersed in water. The cross indicates the coordinates calculated with Eqs. (13, 14, 15) for the TE 240 1 mode.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

A
ω = ω s 0 ,
Δ ω s = C s A ( ω s 0 ) 0 ,
1 Q s = 0 ,
1 Q s = 1 Q s 0 + 1 Q a , 1 Q s 0 i 1 Q i ,
1 Q a = 1 4 π N s ϵ i ( r ) , E s ( r ) 2 d V ,
N s = 1 4 π ϵ r ( r ) E s ( r ) 2 d V ,
1 Q a = 2 n 3 i n 3 r θ in , 1 Q a = 2 n 3 i n 3 r θ ex ( y ) ,
θ ex = m r 2 η in + η ex ( m r ) { η ex ( y ) + 1 x Re [ ζ * ( y ) ζ ( y ) ζ ( x ) 2 ζ ( x ) ζ ( x ) ] }
θ ex = m r 2 η ex ( y ) m r 2 η in + η ex ( m r )
θ in = 1 1 m r 2 θ ex ( m r ) .
η ex ( y ) 1 y ζ l ( x ξ ) ζ l ( x ) 2 d ξ .
K = [ k 1 a 2 n 3 r 2 ( m r 2 1 ) 3 2 ] 1 .
d = [ k 1 ( m r 2 1 ) 1 2 ] 1 .
θ ex ( d ) = K m r 2 .
n i = n r 2 Q s 0 θ .
A ( ξ ) A h = 1 + 3 2 Re ( 1 z 5 ξ l = 1 { C 0 l ( 2 l + 1 ) ψ l 2 ( z 5 ξ ) + C 1 l [ ( l + 1 ) ψ l 1 2 ( z 5 ξ ) + l ψ l + 1 2 ( z 5 ξ ) ] } ) ,
C p l = T F 2 p l T P 2 p l T P 1 p l R P 2 p l + T F 1 p l R P 1 p l T P 1 p l + T F 1 p l R P 1 p l R F 2 p l ,
R P f p l = k f + 1 p ζ l ( z 2 f ) ζ l ( z 2 f + 1 ) k f + p ζ l ( z 2 f ) ζ l ( z 2 f + 1 ) k f + 1 p ψ l ( z 2 f ) ζ l ( z 2 f + 1 ) k f + p ψ l ( z 2 f ) ζ l ( z 2 f + 1 ) ,
R F f p l = k f + 1 p ψ l ( z 2 f ) ψ l ( z 2 f + 1 ) k f + p ψ l ( z 2 f ) ψ l ( z 2 f + 1 ) k f + 1 p ζ l ( z 2 f ) ψ l ( z 2 f + 1 ) k f + p ζ l ( z 2 f ) ψ l ( z 2 f + 1 ) ,
T P f p l = k f [ ψ l ( z 2 f + 1 ) ζ l ( z 2 f + 1 ) ψ l ( z 2 f + 1 ) ζ l ( z 2 f + 1 ) ] k f + 1 p ψ l ( z 2 f ) ζ l ( z 2 f + 1 ) k f + p ψ l ( z 2 f ) ζ l ( z 2 f + 1 ) ,
T F f p l = k f [ ψ l ( z 2 f + 1 ) ζ l ( z 2 f + 1 ) ψ l ( z 2 f + 1 ) ζ l ( z 2 f + 1 ) ] k f + p ψ l ( z 2 f + 1 ) ζ l ( z 2 f ) k f + 1 p ψ l ( z 2 f + 1 ) ζ l ( z 2 f ) ,
A = 3 0 1 A ( ξ ) ξ 2 d ξ .
0 1 ψ l ( z ξ ) ψ l ( z ) 2 d ξ η in = 1 2 { 1 + 1 p l 2 2 l + 1 z p l Im z = 0 Im ( z p l + 1 ) Im ( z ) Re ( z ) Im z 0 } ,

Metrics