Abstract

Spectral, temporal, and coherence properties of supercontinuum (SC) generation in a microstructure fiber were experimentally studied with low-peak-power femtosecond pump pulses. By a spectral interferometry approach, the degree of mutual (axial) spectral coherence was observed to be low for solitons with a pump wavelength region close to the zero-dispersion wavelength (ZDW) and was observed to be high for the solitons with a pump wavelength region far from the ZDW. The generation of multiple frequency channels was experimentally demonstrated by dual time-delayed low-peak-power pump pulses near and far from the ZDW for possible application in a wavelength-division-multiplexing network.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
    [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
    [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  4. R. R. Alfano, P. L. Baldeck, F. Raccah, and P. P. Ho, "Cross phase modulation measured in optical fibers," Appl. Opt. 26, 3491-3492 (1987).
    [CrossRef] [PubMed]
  5. H. Takara, "Multiple optical carrier generation from a supercontinuum source," Opt. Photonics News 13, 48-51 (2002).
    [CrossRef]
  6. M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
    [CrossRef]
  7. M. Bellini and T. W. Hänsch, "Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer," Opt. Lett. 25, 1049-1051 (2000).
    [CrossRef]
  8. P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, "Phase-coherent generation of tunable visible femtosecond pulses," Opt. Lett. 28, 185-187 (2003).
    [CrossRef] [PubMed]
  9. I. Zeylikovich and R. R. Alfano, "Coherence properties of the supercontinuum source," Appl. Phys. B 77, 265-268 (2003).
    [CrossRef]
  10. C. Corsi, A. Tortora, and M. Bellini, "Mutual coherence of supercontinuum pulses collinearly generated in bulk media" Appl. Phys. B 77, 285-290 (2003).
    [CrossRef]
  11. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  12. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
    [CrossRef] [PubMed]
  13. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
    [CrossRef]
  14. M. Nakazawa, K. Tamura, H. Kubbota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
    [CrossRef]
  15. P. Russell, "Photonic crystal fibers," Science 299, 358-262 (2003).
    [CrossRef] [PubMed]
  16. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  17. J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef]
  18. A. Origosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
    [CrossRef]
  19. J. M. Dudley and S. Coen, "Numerical simulation and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
    [CrossRef]
  20. J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
    [CrossRef]
  21. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
    [CrossRef] [PubMed]
  22. F. Lu and W. H. Knox, "Generation of a broadband continuum with spectral coherence in tapered single-mode optical fibers" Opt. Express 12, 347-353 (2004).
    [CrossRef] [PubMed]
  23. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef]
  24. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  25. T. M. Fortier, D. J. Jones, J. Ye, S. Cundiff, and R. S. Windeler, "Long-term carrier-envelope phase coherence," Opt. Lett. 27, 1436-1438 (2002).
    [CrossRef]
  26. I. Zeylikovich, Q. D. Liu, G. Bai, N. Zhadin, A. Gorokhovsky, and R. R. Alfano, "Interferometric 2D imaging amplitude correlator for ultrashort pulses," Opt. Commun. 115, 485-490 (1995).
    [CrossRef]
  27. P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987).
    [CrossRef]
  28. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, and R. Trebino, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
    [CrossRef]
  29. A. L. Gaeta "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  30. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, "Soliton at the zero-group-dispersion wavelength of a single-model fiber," Opt. Lett. 12, 628-630 (1987).
    [CrossRef] [PubMed]
  31. K. M. Hilligsoe, H. N. Paulsen, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Initial steps of supercontinuum generation in photonic crystal fibers," J. Opt. Soc. Am. B 20, 1887-1893 (2003).
    [CrossRef]
  32. G. C. Bjorklund, "Effects of focusing on third-order nonlinear process in isotropic media," IEEE J. Quantum Electron. QE-11, 287-296 (1975).
    [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics (Pergamon, 1964).
  34. R.R.Alfano, ed., The Supercontinuum Laser Source (Springler-Verlag, 1989).
    [CrossRef]

2004 (1)

2003 (7)

P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, "Phase-coherent generation of tunable visible femtosecond pulses," Opt. Lett. 28, 185-187 (2003).
[CrossRef] [PubMed]

K. M. Hilligsoe, H. N. Paulsen, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Initial steps of supercontinuum generation in photonic crystal fibers," J. Opt. Soc. Am. B 20, 1887-1893 (2003).
[CrossRef]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

I. Zeylikovich and R. R. Alfano, "Coherence properties of the supercontinuum source," Appl. Phys. B 77, 265-268 (2003).
[CrossRef]

C. Corsi, A. Tortora, and M. Bellini, "Mutual coherence of supercontinuum pulses collinearly generated in bulk media" Appl. Phys. B 77, 285-290 (2003).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

P. Russell, "Photonic crystal fibers," Science 299, 358-262 (2003).
[CrossRef] [PubMed]

2002 (8)

J. M. Dudley and S. Coen, "Numerical simulation and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

H. Takara, "Multiple optical carrier generation from a supercontinuum source," Opt. Photonics News 13, 48-51 (2002).
[CrossRef]

A. L. Gaeta "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, and R. Trebino, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
[CrossRef]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

T. M. Fortier, D. J. Jones, J. Ye, S. Cundiff, and R. S. Windeler, "Long-term carrier-envelope phase coherence," Opt. Lett. 27, 1436-1438 (2002).
[CrossRef]

A. Origosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
[CrossRef]

2001 (1)

2000 (5)

M. Bellini and T. W. Hänsch, "Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer," Opt. Lett. 25, 1049-1051 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

1998 (1)

M. Nakazawa, K. Tamura, H. Kubbota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

1995 (1)

I. Zeylikovich, Q. D. Liu, G. Bai, N. Zhadin, A. Gorokhovsky, and R. R. Alfano, "Interferometric 2D imaging amplitude correlator for ultrashort pulses," Opt. Commun. 115, 485-490 (1995).
[CrossRef]

1987 (3)

1975 (1)

G. C. Bjorklund, "Effects of focusing on third-order nonlinear process in isotropic media," IEEE J. Quantum Electron. QE-11, 287-296 (1975).
[CrossRef]

1970 (2)

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Alfano, R. R.

I. Zeylikovich and R. R. Alfano, "Coherence properties of the supercontinuum source," Appl. Phys. B 77, 265-268 (2003).
[CrossRef]

I. Zeylikovich, Q. D. Liu, G. Bai, N. Zhadin, A. Gorokhovsky, and R. R. Alfano, "Interferometric 2D imaging amplitude correlator for ultrashort pulses," Opt. Commun. 115, 485-490 (1995).
[CrossRef]

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987).
[CrossRef]

R. R. Alfano, P. L. Baldeck, F. Raccah, and P. P. Ho, "Cross phase modulation measured in optical fibers," Appl. Opt. 26, 3491-3492 (1987).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

Bai, G.

I. Zeylikovich, Q. D. Liu, G. Bai, N. Zhadin, A. Gorokhovsky, and R. R. Alfano, "Interferometric 2D imaging amplitude correlator for ultrashort pulses," Opt. Commun. 115, 485-490 (1995).
[CrossRef]

Baldeck, P. L.

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987).
[CrossRef]

R. R. Alfano, P. L. Baldeck, F. Raccah, and P. P. Ho, "Cross phase modulation measured in optical fibers," Appl. Opt. 26, 3491-3492 (1987).
[CrossRef] [PubMed]

Baum, P.

Bellini, M.

C. Corsi, A. Tortora, and M. Bellini, "Mutual coherence of supercontinuum pulses collinearly generated in bulk media" Appl. Phys. B 77, 285-290 (2003).
[CrossRef]

M. Bellini and T. W. Hänsch, "Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer," Opt. Lett. 25, 1049-1051 (2000).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, "Effects of focusing on third-order nonlinear process in isotropic media," IEEE J. Quantum Electron. QE-11, 287-296 (1975).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1964).

Chen, H. H.

Chudoba, C.

Coen, S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

J. M. Dudley and S. Coen, "Numerical simulation and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
[CrossRef]

Corsi, C.

C. Corsi, A. Tortora, and M. Bellini, "Mutual coherence of supercontinuum pulses collinearly generated in bulk media" Appl. Phys. B 77, 285-290 (2003).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Cundiff, S.

Cundiff, S. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Dudley, J. M.

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

J. M. Dudley and S. Coen, "Numerical simulation and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
[CrossRef]

Fortier, T. M.

Fujimoto, J. G.

Gaeta, A. L.

Ghanta, R. K.

Gorokhovsky, A.

I. Zeylikovich, Q. D. Liu, G. Bai, N. Zhadin, A. Gorokhovsky, and R. R. Alfano, "Interferometric 2D imaging amplitude correlator for ultrashort pulses," Opt. Commun. 115, 485-490 (1995).
[CrossRef]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Gu, X.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

M. Bellini and T. W. Hänsch, "Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer," Opt. Lett. 25, 1049-1051 (2000).
[CrossRef]

Hartl, I.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Hilligsoe, K. M.

Ho, P. P.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Husakou, A. V.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Jones, D. J.

T. M. Fortier, D. J. Jones, J. Ye, S. Cundiff, and R. S. Windeler, "Long-term carrier-envelope phase coherence," Opt. Lett. 27, 1436-1438 (2002).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Keiding, S. R.

Kimmel, M.

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

A. Origosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
[CrossRef]

Knox, W. H.

Ko, T. H.

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Kubbota, H.

M. Nakazawa, K. Tamura, H. Kubbota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Larsen, J. J.

Lee, Y. C.

Li, X. D.

Liu, Q. D.

I. Zeylikovich, Q. D. Liu, G. Bai, N. Zhadin, A. Gorokhovsky, and R. R. Alfano, "Interferometric 2D imaging amplitude correlator for ultrashort pulses," Opt. Commun. 115, 485-490 (1995).
[CrossRef]

Lochbrunner, S.

Lu, F.

Menyuk, C. R.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Nakazawa, M.

M. Nakazawa, K. Tamura, H. Kubbota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Origosa-Blanch, A.

O'Shea, P.

Paulsen, H. N.

Piel, J.

Raccah, F.

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Riedle, E.

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-262 (2003).
[CrossRef] [PubMed]

Russell, P. St.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

A. Origosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002).
[CrossRef]

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Sato, K-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Shreenath, A. P.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Takara, H.

H. Takara, "Multiple optical carrier generation from a supercontinuum source," Opt. Photonics News 13, 48-51 (2002).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Tamura, K.

M. Nakazawa, K. Tamura, H. Kubbota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Thogersen, J.

Tortora, A.

C. Corsi, A. Tortora, and M. Bellini, "Mutual coherence of supercontinuum pulses collinearly generated in bulk media" Appl. Phys. B 77, 285-290 (2003).
[CrossRef]

Trebino, R.

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Wai, P. K.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

Windeler, R.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

T. M. Fortier, D. J. Jones, J. Ye, S. Cundiff, and R. S. Windeler, "Long-term carrier-envelope phase coherence," Opt. Lett. 27, 1436-1438 (2002).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1964).

Xu, L.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

Ye, J.

T. M. Fortier, D. J. Jones, J. Ye, S. Cundiff, and R. S. Windeler, "Long-term carrier-envelope phase coherence," Opt. Lett. 27, 1436-1438 (2002).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Yoshida, E.

M. Nakazawa, K. Tamura, H. Kubbota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Zeek, E.

Zeylikovich, I.

I. Zeylikovich and R. R. Alfano, "Coherence properties of the supercontinuum source," Appl. Phys. B 77, 265-268 (2003).
[CrossRef]

I. Zeylikovich, Q. D. Liu, G. Bai, N. Zhadin, A. Gorokhovsky, and R. R. Alfano, "Interferometric 2D imaging amplitude correlator for ultrashort pulses," Opt. Commun. 115, 485-490 (1995).
[CrossRef]

Zhadin, N.

I. Zeylikovich, Q. D. Liu, G. Bai, N. Zhadin, A. Gorokhovsky, and R. R. Alfano, "Interferometric 2D imaging amplitude correlator for ultrashort pulses," Opt. Commun. 115, 485-490 (1995).
[CrossRef]

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

I. Zeylikovich and R. R. Alfano, "Coherence properties of the supercontinuum source," Appl. Phys. B 77, 265-268 (2003).
[CrossRef]

C. Corsi, A. Tortora, and M. Bellini, "Mutual coherence of supercontinuum pulses collinearly generated in bulk media" Appl. Phys. B 77, 285-290 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, "More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. C. Bjorklund, "Effects of focusing on third-order nonlinear process in isotropic media," IEEE J. Quantum Electron. QE-11, 287-296 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Dudley and S. Coen, "Numerical simulation and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers," IEEE J. Sel. Top. Quantum Electron. 8, 651-659 (2002).
[CrossRef]

J. Lightwave Technol. (1)

P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. LT-5, 1712-1715 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

I. Zeylikovich, Q. D. Liu, G. Bai, N. Zhadin, A. Gorokhovsky, and R. R. Alfano, "Interferometric 2D imaging amplitude correlator for ultrashort pulses," Opt. Commun. 115, 485-490 (1995).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

M. Nakazawa, K. Tamura, H. Kubbota, and E. Yoshida, "Coherence degradation in the process of supercontinuum generation in an optical fiber," Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Opt. Lett. (9)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, "Soliton at the zero-group-dispersion wavelength of a single-model fiber," Opt. Lett. 12, 628-630 (1987).
[CrossRef] [PubMed]

M. Bellini and T. W. Hänsch, "Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer," Opt. Lett. 25, 1049-1051 (2000).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

A. L. Gaeta "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, and R. Trebino, "Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
[CrossRef]

J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

T. M. Fortier, D. J. Jones, J. Ye, S. Cundiff, and R. S. Windeler, "Long-term carrier-envelope phase coherence," Opt. Lett. 27, 1436-1438 (2002).
[CrossRef]

P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, "Phase-coherent generation of tunable visible femtosecond pulses," Opt. Lett. 28, 185-187 (2003).
[CrossRef] [PubMed]

Opt. Photonics News (1)

H. Takara, "Multiple optical carrier generation from a supercontinuum source," Opt. Photonics News 13, 48-51 (2002).
[CrossRef]

Phys. Rev. Lett. (5)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstuctured fiber," Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in crystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

Science (2)

P. Russell, "Photonic crystal fibers," Science 299, 358-262 (2003).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1964).

R.R.Alfano, ed., The Supercontinuum Laser Source (Springler-Verlag, 1989).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for spectra and spectral-temporal coherence of SC generation measurements. Ms, mirrors; BS, beam-splitter; DG, diffraction grating; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Spectra recorded at a pump wavelength of 780 nm ( P ) for various peak powers coming out of the fiber. S and ↓ indicate soliton spectral peaks. Spectral-domain interference of the corresponding soliton spectral bands are features labeled A and A .

Fig. 3
Fig. 3

SHG autocorrelation time-domain measurements. (a) Expected autocorrelation signal from three pulses, shown in inset (a1); (b)–(d) measured signals of the fiber output at (b) 65 , (c) 85 , and (d) 105 W peak powers, averaged over a large number of pulses; (d1), (d2), adjusted cross-correlation signal of (d1) peaks 1 and 2 and (d2) peaks 3, 4 and 5. (d3) A signal, taken without averaging, shows a temporal jitter Δ t .

Fig. 4
Fig. 4

Details of spectra region A from Fig. 2. The frequency period of the spectral interference peaks Ω S and its fluctuations δ F are captured at different temporal moments.

Fig. 5
Fig. 5

(a) Far-field output intensity distribution and (b)–(d) the spectrograph output intensity distribution at (b) 660, (c) 780, (d) 830 nm.

Fig. 6
Fig. 6

Amplitude autocorrelation curve γ ( τ ) and a near-zero-delay interferometric region of the SC signal (vertically in inset).

Fig. 7
Fig. 7

Spectra measured with a pump wavelength of 1560 nm for (top) a single pulse, and for (second panel) two pump-pulses separated by 6.7 ps and (third panel) 13.4 ps. The extended part of the spectrum from the third panel is shown in the bottom panel.

Fig. 8
Fig. 8

Measured spectra for a pump wavelength of 780 nm and two pump pulses separated by (top) 3.3 and (bottom) 6.6 ps.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( ω , τ ) = 0 L G 1 ( ω , z ) + G 2 ( ω , z v g τ ) exp ( i ω τ ) 2 d z = [ I 1 ( ω ) + I 2 ( ω ) ] [ 1 + V g 12 ( ω , τ ) cos ( ω τ δ ) ] ,
V = 2 [ I 1 ( ω ) I 2 ( ω ) ] 1 2 I 1 ( ω ) + I 2 ( ω ) .
g 12 ( ω , τ ) = 0 L G 1 ( ω , z ) G 2 * ( ω , z v g τ ) d z [ I 1 ( ω ) I 2 ( ω ) ] 1 2 ,
B = 2 ( γ P 0 β 2 ) 1 2 .

Metrics