Abstract

Using phase-measurement interferometry, we observe the waveguide induced by a solitonlike optical beam sustained by the molecular reorientation-induced optical nonlinearity of a nematic liquid crystal in planar configuration. Our purpose in the study is to characterize the nonlocality of the optical response of nematic liquid crystals. A good agreement is obtained between the experiment and a full (2+1)-dimensional numerical simulation of the nonlinear optical beam propagation in the cell.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. S. Kivshar and G. I. Stegeman, "Spatial optical solitons--guiding light for future technologies," Opt. Photon. News 14(2), pp. 59-63.
  2. S. Trillo and W. E. Torruellas, eds., Spatial Solitons (Springer-Verlag, 2001).
    [CrossRef]
  3. A. D. Boardman and A. P. Sukhorukov, eds., Soliton-Driven Photonics, NATO Sciences Series II, Vol. 31 (Kluwer Academic, 2001).
    [CrossRef]
  4. M. J. Ablowitz, G. Biondini, and L. A. Ostrovsky, "Optical solitons: perspectives and applications," Chaos 10, 471-474 (2000).
    [CrossRef]
  5. G. I. Stegeman, D. N. Christodoulides, and M. Segev, "Optical spatial solitons: historical perspectives," IEEE J. Sel. Top. Quantum Electron. 6, 1419-1427 (2000).
    [CrossRef]
  6. M. Warenghem, J.-F. Henninot, and G. Abbate, "Nonlinearly induced self-waveguiding structure in dye-doped nematic liquid crystals confined in capillaries," Opt. Express 2, 483-490 (1998).
    [CrossRef] [PubMed]
  7. M. A. Karpierz, "Spatial solitons in liquid crystals," in Ref. , pp. 41-57.
  8. M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I.-C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7-9 (2000).
    [CrossRef]
  9. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
    [CrossRef]
  10. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "Routing of anisotropic spatial solitons and modulational instability in liquid crystals," Nature 432, 733-737 (2004).
    [CrossRef] [PubMed]
  11. G. Assanto, M. Peccianti, and C. Conti, "Nematicons: optical spatial solitons in nematic liquid crystals," Opt. Photon. News 14(2), pp. 44-48.
  12. M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, "Nonlocal spatial soliton interactions in nematic liquid crystals," Opt. Lett. 27, 1460-1462 (2002).
    [CrossRef]
  13. C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003).
    [CrossRef] [PubMed]
  14. C. Conti, M. Peccianti, and G. Assanto, "Observation of optical spatial solitons in a highly nonlocal medium," Phys. Rev. Lett. 92, 113902 (2004).
    [CrossRef] [PubMed]
  15. A. W. Snyder and D. J. Mitchell, "Accessible solitons," Science 276, 1538-1541 (1997).
    [CrossRef]
  16. E. Braun, L. Faucheux, and A. Libchaber, "Strong self-focusing in nematic liquid crystals," Phys. Rev. A 48, 611-622 (1993).
    [CrossRef] [PubMed]
  17. P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  18. D. J. Mitchell and A. W. Snyder, "Soliton dynamics in a nonlocal medium," J. Opt. Soc. Am. B 16, 236-239 (1999).
    [CrossRef]
  19. X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, "Single-component higher-order mode solitons in nematic liquid crystals," Opt. Commun. 233, 211-217 (2004), and references therein.
    [CrossRef]
  20. I.-C. Khoo, T. H. Liu, and P. Y. Yan, "Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment," J. Opt. Soc. Am. B 4, 115-120 (1987).
    [CrossRef]
  21. J.-F. Henninot, M. Debailleul, and M. Warenghem, "Tunable non-locality of thermal non-linearity in dye doped nematic liquid crystals," Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 631-640 (2002).
    [CrossRef]
  22. J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells," Opt. Express 12, 1011-1018 (2004).
    [CrossRef] [PubMed]
  23. I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).
  24. M. Peccianti, A. Fratalocchi, and G. Assanto, "Transverse dynamics of nematicons," Opt. Express 12, 6524-6529 (2004).
    [CrossRef] [PubMed]
  25. J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulation of 2-D lateral light propagation in nematic liquid-crystal cells with tilted molecules and nonlinear reorientational effect," Opt. Quantum Electron. (to be published).
  26. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  27. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1995).
  28. D. Suter and T. Blasberg, "Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium," Phys. Rev. A 48, 4583-4587 (1993).
    [CrossRef] [PubMed]
  29. O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619/1-5 (2002), and references therein.
    [CrossRef]
  30. J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Time dependence of soliton formation in planar cells of nematic liquid-crystal," IEEE J. Quantum Electron. 41, 735-740 (2002).
    [CrossRef]
  31. K. Creath, "Phase-measurement interferometry techniques," in Progress in Optics XXVI, E.Wolf, ed. (Elsevier Science, 1988), pp. 349-393.
  32. K. J. Gåsvik, Optical Metrology, 2nd ed. (Wiley, 1995) .
  33. P. Carré, "Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures," Metrologia 2, 13-23 (1966).
  34. M. Hipp, J. Woisetschläger, P. Reiterer, and T. Neger, "Digital evaluation of interferograms," Measurement 36, 53-66 (2004). IDEA software (Interferometrical Data Evaluation Algorithms, http://optics.tugraz.at/) has been developed for the purposes of fringe analysis and phase evaluation from interferograms, with a view to applications in optical metrology, e.g., for surface topography and refractivity characterizations.
    [CrossRef]
  35. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982).
    [CrossRef]

2004 (6)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "Routing of anisotropic spatial solitons and modulational instability in liquid crystals," Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, "Observation of optical spatial solitons in a highly nonlocal medium," Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, "Single-component higher-order mode solitons in nematic liquid crystals," Opt. Commun. 233, 211-217 (2004), and references therein.
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells," Opt. Express 12, 1011-1018 (2004).
[CrossRef] [PubMed]

M. Peccianti, A. Fratalocchi, and G. Assanto, "Transverse dynamics of nematicons," Opt. Express 12, 6524-6529 (2004).
[CrossRef] [PubMed]

M. Hipp, J. Woisetschläger, P. Reiterer, and T. Neger, "Digital evaluation of interferograms," Measurement 36, 53-66 (2004). IDEA software (Interferometrical Data Evaluation Algorithms, http://optics.tugraz.at/) has been developed for the purposes of fringe analysis and phase evaluation from interferograms, with a view to applications in optical metrology, e.g., for surface topography and refractivity characterizations.
[CrossRef]

2003 (1)

C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef] [PubMed]

2002 (5)

O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619/1-5 (2002), and references therein.
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Time dependence of soliton formation in planar cells of nematic liquid-crystal," IEEE J. Quantum Electron. 41, 735-740 (2002).
[CrossRef]

M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, "Nonlocal spatial soliton interactions in nematic liquid crystals," Opt. Lett. 27, 1460-1462 (2002).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

J.-F. Henninot, M. Debailleul, and M. Warenghem, "Tunable non-locality of thermal non-linearity in dye doped nematic liquid crystals," Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 631-640 (2002).
[CrossRef]

2000 (3)

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I.-C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

M. J. Ablowitz, G. Biondini, and L. A. Ostrovsky, "Optical solitons: perspectives and applications," Chaos 10, 471-474 (2000).
[CrossRef]

G. I. Stegeman, D. N. Christodoulides, and M. Segev, "Optical spatial solitons: historical perspectives," IEEE J. Sel. Top. Quantum Electron. 6, 1419-1427 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

A. W. Snyder and D. J. Mitchell, "Accessible solitons," Science 276, 1538-1541 (1997).
[CrossRef]

1993 (2)

E. Braun, L. Faucheux, and A. Libchaber, "Strong self-focusing in nematic liquid crystals," Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

D. Suter and T. Blasberg, "Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium," Phys. Rev. A 48, 4583-4587 (1993).
[CrossRef] [PubMed]

1987 (1)

1982 (1)

1966 (1)

P. Carré, "Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures," Metrologia 2, 13-23 (1966).

Abbate, G.

Ablowitz, M. J.

M. J. Ablowitz, G. Biondini, and L. A. Ostrovsky, "Optical solitons: perspectives and applications," Chaos 10, 471-474 (2000).
[CrossRef]

Adamski, A.

X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, "Single-component higher-order mode solitons in nematic liquid crystals," Opt. Commun. 233, 211-217 (2004), and references therein.
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Assanto, G.

C. Conti, M. Peccianti, and G. Assanto, "Observation of optical spatial solitons in a highly nonlocal medium," Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

M. Peccianti, A. Fratalocchi, and G. Assanto, "Transverse dynamics of nematicons," Opt. Express 12, 6524-6529 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "Routing of anisotropic spatial solitons and modulational instability in liquid crystals," Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, "Nonlocal spatial soliton interactions in nematic liquid crystals," Opt. Lett. 27, 1460-1462 (2002).
[CrossRef]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I.-C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

G. Assanto, M. Peccianti, and C. Conti, "Nematicons: optical spatial solitons in nematic liquid crystals," Opt. Photon. News 14(2), pp. 44-48.

Bang, O.

O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619/1-5 (2002), and references therein.
[CrossRef]

Beeckman, J.

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells," Opt. Express 12, 1011-1018 (2004).
[CrossRef] [PubMed]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Time dependence of soliton formation in planar cells of nematic liquid-crystal," IEEE J. Quantum Electron. 41, 735-740 (2002).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulation of 2-D lateral light propagation in nematic liquid-crystal cells with tilted molecules and nonlinear reorientational effect," Opt. Quantum Electron. (to be published).

Biondini, G.

M. J. Ablowitz, G. Biondini, and L. A. Ostrovsky, "Optical solitons: perspectives and applications," Chaos 10, 471-474 (2000).
[CrossRef]

Blasberg, T.

D. Suter and T. Blasberg, "Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium," Phys. Rev. A 48, 4583-4587 (1993).
[CrossRef] [PubMed]

Boardman, A. D.

A. D. Boardman and A. P. Sukhorukov, eds., Soliton-Driven Photonics, NATO Sciences Series II, Vol. 31 (Kluwer Academic, 2001).
[CrossRef]

Braun, E.

E. Braun, L. Faucheux, and A. Libchaber, "Strong self-focusing in nematic liquid crystals," Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

Brzdakiewicz, K. A.

Cambournac, C.

X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, "Single-component higher-order mode solitons in nematic liquid crystals," Opt. Commun. 233, 211-217 (2004), and references therein.
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells," Opt. Express 12, 1011-1018 (2004).
[CrossRef] [PubMed]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Time dependence of soliton formation in planar cells of nematic liquid-crystal," IEEE J. Quantum Electron. 41, 735-740 (2002).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulation of 2-D lateral light propagation in nematic liquid-crystal cells with tilted molecules and nonlinear reorientational effect," Opt. Quantum Electron. (to be published).

Carré, P.

P. Carré, "Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures," Metrologia 2, 13-23 (1966).

Christodoulides, D. N.

G. I. Stegeman, D. N. Christodoulides, and M. Segev, "Optical spatial solitons: historical perspectives," IEEE J. Sel. Top. Quantum Electron. 6, 1419-1427 (2000).
[CrossRef]

Conti, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "Routing of anisotropic spatial solitons and modulational instability in liquid crystals," Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, "Observation of optical spatial solitons in a highly nonlocal medium," Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

G. Assanto, M. Peccianti, and C. Conti, "Nematicons: optical spatial solitons in nematic liquid crystals," Opt. Photon. News 14(2), pp. 44-48.

Creath, K.

K. Creath, "Phase-measurement interferometry techniques," in Progress in Optics XXVI, E.Wolf, ed. (Elsevier Science, 1988), pp. 349-393.

de Gennes, P.-G.

P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

De Luca, A.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "Routing of anisotropic spatial solitons and modulational instability in liquid crystals," Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I.-C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

Debailleul, M.

J.-F. Henninot, M. Debailleul, and M. Warenghem, "Tunable non-locality of thermal non-linearity in dye doped nematic liquid crystals," Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 631-640 (2002).
[CrossRef]

Faucheux, L.

E. Braun, L. Faucheux, and A. Libchaber, "Strong self-focusing in nematic liquid crystals," Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1995).

Fratalocchi, A.

Gåsvik, K. J.

K. J. Gåsvik, Optical Metrology, 2nd ed. (Wiley, 1995) .

Haelterman, M.

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells," Opt. Express 12, 1011-1018 (2004).
[CrossRef] [PubMed]

X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, "Single-component higher-order mode solitons in nematic liquid crystals," Opt. Commun. 233, 211-217 (2004), and references therein.
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Time dependence of soliton formation in planar cells of nematic liquid-crystal," IEEE J. Quantum Electron. 41, 735-740 (2002).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulation of 2-D lateral light propagation in nematic liquid-crystal cells with tilted molecules and nonlinear reorientational effect," Opt. Quantum Electron. (to be published).

Henninot, J.-F.

J.-F. Henninot, M. Debailleul, and M. Warenghem, "Tunable non-locality of thermal non-linearity in dye doped nematic liquid crystals," Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 631-640 (2002).
[CrossRef]

M. Warenghem, J.-F. Henninot, and G. Abbate, "Nonlinearly induced self-waveguiding structure in dye-doped nematic liquid crystals confined in capillaries," Opt. Express 2, 483-490 (1998).
[CrossRef] [PubMed]

Hipp, M.

M. Hipp, J. Woisetschläger, P. Reiterer, and T. Neger, "Digital evaluation of interferograms," Measurement 36, 53-66 (2004). IDEA software (Interferometrical Data Evaluation Algorithms, http://optics.tugraz.at/) has been developed for the purposes of fringe analysis and phase evaluation from interferograms, with a view to applications in optical metrology, e.g., for surface topography and refractivity characterizations.
[CrossRef]

Hutsebaut, X.

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells," Opt. Express 12, 1011-1018 (2004).
[CrossRef] [PubMed]

X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, "Single-component higher-order mode solitons in nematic liquid crystals," Opt. Commun. 233, 211-217 (2004), and references therein.
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Time dependence of soliton formation in planar cells of nematic liquid-crystal," IEEE J. Quantum Electron. 41, 735-740 (2002).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulation of 2-D lateral light propagation in nematic liquid-crystal cells with tilted molecules and nonlinear reorientational effect," Opt. Quantum Electron. (to be published).

Ina, H.

Karpierz, M. A.

M. A. Karpierz, "Spatial solitons in liquid crystals," in Ref. , pp. 41-57.

Khoo, I.-C.

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I.-C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

I.-C. Khoo, T. H. Liu, and P. Y. Yan, "Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: theory and experiment," J. Opt. Soc. Am. B 4, 115-120 (1987).
[CrossRef]

I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

Kivshar, Yu. S.

Yu. S. Kivshar and G. I. Stegeman, "Spatial optical solitons--guiding light for future technologies," Opt. Photon. News 14(2), pp. 59-63.

Kobayashi, S.

Krolikowski, W.

O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619/1-5 (2002), and references therein.
[CrossRef]

Libchaber, A.

E. Braun, L. Faucheux, and A. Libchaber, "Strong self-focusing in nematic liquid crystals," Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

Liu, T. H.

Mitchell, D. J.

Neger, T.

M. Hipp, J. Woisetschläger, P. Reiterer, and T. Neger, "Digital evaluation of interferograms," Measurement 36, 53-66 (2004). IDEA software (Interferometrical Data Evaluation Algorithms, http://optics.tugraz.at/) has been developed for the purposes of fringe analysis and phase evaluation from interferograms, with a view to applications in optical metrology, e.g., for surface topography and refractivity characterizations.
[CrossRef]

Neyts, K.

X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, "Single-component higher-order mode solitons in nematic liquid crystals," Opt. Commun. 233, 211-217 (2004), and references therein.
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells," Opt. Express 12, 1011-1018 (2004).
[CrossRef] [PubMed]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Time dependence of soliton formation in planar cells of nematic liquid-crystal," IEEE J. Quantum Electron. 41, 735-740 (2002).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulation of 2-D lateral light propagation in nematic liquid-crystal cells with tilted molecules and nonlinear reorientational effect," Opt. Quantum Electron. (to be published).

Ostrovsky, L. A.

M. J. Ablowitz, G. Biondini, and L. A. Ostrovsky, "Optical solitons: perspectives and applications," Chaos 10, 471-474 (2000).
[CrossRef]

Peccianti, M.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "Routing of anisotropic spatial solitons and modulational instability in liquid crystals," Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

M. Peccianti, A. Fratalocchi, and G. Assanto, "Transverse dynamics of nematicons," Opt. Express 12, 6524-6529 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, "Observation of optical spatial solitons in a highly nonlocal medium," Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef] [PubMed]

M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, "Nonlocal spatial soliton interactions in nematic liquid crystals," Opt. Lett. 27, 1460-1462 (2002).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I.-C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

G. Assanto, M. Peccianti, and C. Conti, "Nematicons: optical spatial solitons in nematic liquid crystals," Opt. Photon. News 14(2), pp. 44-48.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1995).

Prost, J.

P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

Rasmussen, J. J.

O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619/1-5 (2002), and references therein.
[CrossRef]

Reiterer, P.

M. Hipp, J. Woisetschläger, P. Reiterer, and T. Neger, "Digital evaluation of interferograms," Measurement 36, 53-66 (2004). IDEA software (Interferometrical Data Evaluation Algorithms, http://optics.tugraz.at/) has been developed for the purposes of fringe analysis and phase evaluation from interferograms, with a view to applications in optical metrology, e.g., for surface topography and refractivity characterizations.
[CrossRef]

Segev, M.

G. I. Stegeman, D. N. Christodoulides, and M. Segev, "Optical spatial solitons: historical perspectives," IEEE J. Sel. Top. Quantum Electron. 6, 1419-1427 (2000).
[CrossRef]

Snyder, A. W.

Stegeman, G. I.

G. I. Stegeman, D. N. Christodoulides, and M. Segev, "Optical spatial solitons: historical perspectives," IEEE J. Sel. Top. Quantum Electron. 6, 1419-1427 (2000).
[CrossRef]

Yu. S. Kivshar and G. I. Stegeman, "Spatial optical solitons--guiding light for future technologies," Opt. Photon. News 14(2), pp. 59-63.

Sukhorukov, A. P.

A. D. Boardman and A. P. Sukhorukov, eds., Soliton-Driven Photonics, NATO Sciences Series II, Vol. 31 (Kluwer Academic, 2001).
[CrossRef]

Suter, D.

D. Suter and T. Blasberg, "Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium," Phys. Rev. A 48, 4583-4587 (1993).
[CrossRef] [PubMed]

Takeda, M.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1995).

Torruellas, W. E.

S. Trillo and W. E. Torruellas, eds., Spatial Solitons (Springer-Verlag, 2001).
[CrossRef]

Trillo, S.

S. Trillo and W. E. Torruellas, eds., Spatial Solitons (Springer-Verlag, 2001).
[CrossRef]

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "Routing of anisotropic spatial solitons and modulational instability in liquid crystals," Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I.-C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1995).

Warenghem, M.

J.-F. Henninot, M. Debailleul, and M. Warenghem, "Tunable non-locality of thermal non-linearity in dye doped nematic liquid crystals," Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 631-640 (2002).
[CrossRef]

M. Warenghem, J.-F. Henninot, and G. Abbate, "Nonlinearly induced self-waveguiding structure in dye-doped nematic liquid crystals confined in capillaries," Opt. Express 2, 483-490 (1998).
[CrossRef] [PubMed]

Woisetschläger, J.

M. Hipp, J. Woisetschläger, P. Reiterer, and T. Neger, "Digital evaluation of interferograms," Measurement 36, 53-66 (2004). IDEA software (Interferometrical Data Evaluation Algorithms, http://optics.tugraz.at/) has been developed for the purposes of fringe analysis and phase evaluation from interferograms, with a view to applications in optical metrology, e.g., for surface topography and refractivity characterizations.
[CrossRef]

Wyller, J.

O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619/1-5 (2002), and references therein.
[CrossRef]

Yan, P. Y.

Appl. Phys. Lett. (2)

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I.-C. Khoo, "Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells," Appl. Phys. Lett. 77, 7-9 (2000).
[CrossRef]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "All-optical switching and logic gating with spatial solitons in liquid crystals," Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

Chaos (1)

M. J. Ablowitz, G. Biondini, and L. A. Ostrovsky, "Optical solitons: perspectives and applications," Chaos 10, 471-474 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Time dependence of soliton formation in planar cells of nematic liquid-crystal," IEEE J. Quantum Electron. 41, 735-740 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. I. Stegeman, D. N. Christodoulides, and M. Segev, "Optical spatial solitons: historical perspectives," IEEE J. Sel. Top. Quantum Electron. 6, 1419-1427 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Measurement (1)

M. Hipp, J. Woisetschläger, P. Reiterer, and T. Neger, "Digital evaluation of interferograms," Measurement 36, 53-66 (2004). IDEA software (Interferometrical Data Evaluation Algorithms, http://optics.tugraz.at/) has been developed for the purposes of fringe analysis and phase evaluation from interferograms, with a view to applications in optical metrology, e.g., for surface topography and refractivity characterizations.
[CrossRef]

Metrologia (1)

P. Carré, "Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures," Metrologia 2, 13-23 (1966).

Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A (1)

J.-F. Henninot, M. Debailleul, and M. Warenghem, "Tunable non-locality of thermal non-linearity in dye doped nematic liquid crystals," Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 631-640 (2002).
[CrossRef]

Nature (1)

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, "Routing of anisotropic spatial solitons and modulational instability in liquid crystals," Nature 432, 733-737 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, and K. Neyts, "Single-component higher-order mode solitons in nematic liquid crystals," Opt. Commun. 233, 211-217 (2004), and references therein.
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Photon. News (2)

Yu. S. Kivshar and G. I. Stegeman, "Spatial optical solitons--guiding light for future technologies," Opt. Photon. News 14(2), pp. 59-63.

G. Assanto, M. Peccianti, and C. Conti, "Nematicons: optical spatial solitons in nematic liquid crystals," Opt. Photon. News 14(2), pp. 44-48.

Phys. Rev. A (2)

E. Braun, L. Faucheux, and A. Libchaber, "Strong self-focusing in nematic liquid crystals," Phys. Rev. A 48, 611-622 (1993).
[CrossRef] [PubMed]

D. Suter and T. Blasberg, "Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium," Phys. Rev. A 48, 4583-4587 (1993).
[CrossRef] [PubMed]

Phys. Rev. E (1)

O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619/1-5 (2002), and references therein.
[CrossRef]

Phys. Rev. Lett. (2)

C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003).
[CrossRef] [PubMed]

C. Conti, M. Peccianti, and G. Assanto, "Observation of optical spatial solitons in a highly nonlocal medium," Phys. Rev. Lett. 92, 113902 (2004).
[CrossRef] [PubMed]

Science (1)

A. W. Snyder and D. J. Mitchell, "Accessible solitons," Science 276, 1538-1541 (1997).
[CrossRef]

Other (10)

P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).

S. Trillo and W. E. Torruellas, eds., Spatial Solitons (Springer-Verlag, 2001).
[CrossRef]

A. D. Boardman and A. P. Sukhorukov, eds., Soliton-Driven Photonics, NATO Sciences Series II, Vol. 31 (Kluwer Academic, 2001).
[CrossRef]

M. A. Karpierz, "Spatial solitons in liquid crystals," in Ref. , pp. 41-57.

K. Creath, "Phase-measurement interferometry techniques," in Progress in Optics XXVI, E.Wolf, ed. (Elsevier Science, 1988), pp. 349-393.

K. J. Gåsvik, Optical Metrology, 2nd ed. (Wiley, 1995) .

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, "Simulation of 2-D lateral light propagation in nematic liquid-crystal cells with tilted molecules and nonlinear reorientational effect," Opt. Quantum Electron. (to be published).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, 1995).

I.-C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Modeled liquid-crystal cell. It is invariant with respect to the y and z axes.

Fig. 2
Fig. 2

Numerically obtained evolution of the maximum of the optical-beam intensity profile for different input powers [evolution without absorption ( α = 0 ) for a 3 μ m width and 870 nm wavelength beam]. The liquid-crystal cell is 75 μ m thick and biased with a 1 V voltage.

Fig. 3
Fig. 3

Transverse map of the liquid-crystal molecular orientation in the soliton regime corresponding to Fig. 2.

Fig. 4
Fig. 4

Molecular orientation θ ̂ (thick curves) induced by the optical field A (thin curves) in the middle of the cell: (a) Reorientation along the transverse dimension x, (b) reorientation along the transverse dimension y. (Parameters are kept unchanged.)

Fig. 5
Fig. 5

Schema of the experimental setup with a sketch of the liquid-crystal planar cell. Dark grey area, part of the setup devoted to soliton-beam generation; light grey area, Part of the setup devoted to interferometric measurement. A, variable attenuator; P, linear polarizers; BS, beam-splitters; PP, parallel-face plate; O, microscope objective; F, laser-line filter.

Fig. 6
Fig. 6

Solitonlike beam generation and multifocusing. (a) Evolution of the maximum of the intensity profile for different input powers and an estimated beam width of 3.7 μ m . (b) Corresponding CCD-camera images showing, from top to bottom, diffracting, solitonic, and multifocusing propagation regimes.

Fig. 7
Fig. 7

Numerically obtained evolution of the maximum of the intensity profile for various input powers: evolution considering a linear absorption of α = 0.47 cm 1 for a 3 μ m width and 870 nm wavelength beam. The LC cell is 75 μ m thick and biased with a 1 V voltage.

Fig. 8
Fig. 8

(a) Fringe-pattern distortion, revealing a nonhomogeneous phase shift due to the graded-index waveguide created by (b) a 2.3 mW soliton beam.

Fig. 9
Fig. 9

Phase shift retrieved by the temporal phase-stepping technique and Carré algorithm. (a) Phase-shift map corresponding to Fig. 8a after computation. (b) Phase-shift profile after 307 μ m of propagation: the phase-shift profile (gray curve) is much wider than the optical-beam profile (thin curve); dashed curve, aid-to-the-eye Lorentzian fit of the phase-shift profile.

Fig. 10
Fig. 10

Phase shift resulting from the numerically computed angles of reorientation with parameters of the experiment ( w = 3 μ m , P = 2.3 mW ) .

Fig. 11
Fig. 11

Evolution of the degree of nonlocality of the optically induced molecular reorientation for three different cell thicknesses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 i k A z + ( 2 A x 2 + 2 A y 2 ) + k 0 2 Δ ε opt ( sin 2 θ sin 2 θ 0 ) A + i α 2 A = 0 ,
2 K ( 2 θ x 2 + 2 θ y 2 ) + ε 0 ( Δ ε st E 2 + Δ ε opt A 2 2 ) sin 2 θ = 0 ,
θ ( x = L 2 ) = θ ( x = L 2 ) = 2 ° ,
Δ ϕ ( y , z ) = k 0 L 2 L 2 n z ( x , y , z ) d x ,
n z = [ cos 2 θ n e 2 + sin 2 θ n o 2 ] 1 2

Metrics