Abstract

We study the magnetic-field-induced dichroism on a sample of gallium neutral atoms created in a hollow cathode lamp and describe a method for robust stabilization of violet–blue diode lasers tuned on gallium atomic transitions for an atom nanofabrication experiment. We compare the experimental dichroic signals with theoretical simulations obtained by the solving of the exact atom-field interaction Hamiltonian. We find excellent agreement when considering the magnetic field shielding from the hollow cathode. This method allows for a wide range of frequency tuning, modulation-free locking, and long-term stability of external-cavity diode lasers. From analysis of a square root Allan variance we have achieved a stability of 1MHz at 1-s average time.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer-Verlag, Berlin, 1997).
    [CrossRef]
  2. D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-R38 (2003).
    [CrossRef]
  3. K. B. MacAdam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
    [CrossRef]
  4. L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
    [CrossRef]
  5. O. N. Prudnikov and E. Arimondo, "Sub-Doppler laser cooling on combined optical transitions," J. Opt. Soc. Am. B 20, 909-914 (2003).
    [CrossRef]
  6. O. M. Maragò, B. Fazio, P. G. Gucciardi, and E. Arimondo, "Atomic gallium laser spectroscopy with violet/blue diode lasers," Appl. Phys. B 77, 809-815 (2003).
    [CrossRef]
  7. J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983).
    [CrossRef]
  8. K. L. Corwin, Z. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, "Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295-3298 (1998).
    [CrossRef]
  9. U. Shim, J. Kim, and W. Jhe, "Saturated absorption spectroscopy in the presence of a longitudinal magnetic field," J. Korean Phys. Soc. 35, 222-225 (1999).
  10. N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
    [CrossRef]
  11. A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, Oxford, UK, 1977).
  12. M. Musso, "Hyperfine structure of atoms in combined external fields," Z. Phys. D: At., Mol. Clusters 24, 203-210 (1992).
    [CrossRef]
  13. L. Windholz and M. Musso, "Zeeman and Paschen-Back-effect of the hyperfine structure of the sodium D2-line," Z. Phys. D: At., Mol. Clusters 8, 239-249 (1988).
    [CrossRef]
  14. L. Windholz, C. Krenn, G. Gwehenberger, M. Musso, and B. Schnizer, "Atomic transfer between hyperfine levels in combined electric and magnetic fields," Phys. Rev. Lett. 77, 2190-2193 (1996).
    [CrossRef] [PubMed]
  15. Handbook of Chemistry and Physics, D.R.Lide, ed., 85th ed. (CRC Press, Boca Raton, Fla., 2004).
  16. A. Lurio and A. G. Prodell, "Hfs separations and Hfs anomalies in the P1/22 state of Ga69, Ga71, Tl203, and Tl205," Phys. Rev. 101, 79-83 (1956).
    [CrossRef]
  17. R. T. Daly and J. H. Holloway, "Nuclear magnetic octupole moments of the stable gallium isotopes," Phys. Rev. 96, 539-540 (1954).
    [CrossRef]
  18. J. H. M. Neijzen and A. Dönszelmann, "Hyperfine structure and isotope shift measurements in neutral gallium and indium with a pulsed dye laser," Physica A 98C, 235-241 (1980).
  19. I. I. Sobelmann, Atomic Spectra and Radiative Transitions, (Springer, Berlin, 1979).
    [CrossRef]
  20. J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, "Frequency-stabilized high-power violet laser diode with an ytterbium hollow cathod lamp," Opt. Lett. 28, 245-247 (2003).
    [CrossRef] [PubMed]
  21. D. W. Allan, "Statistics of atomic frequency standards," Proc. IEEE 54, 221-231 (1966).
    [CrossRef]

2003 (4)

D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-R38 (2003).
[CrossRef]

O. M. Maragò, B. Fazio, P. G. Gucciardi, and E. Arimondo, "Atomic gallium laser spectroscopy with violet/blue diode lasers," Appl. Phys. B 77, 809-815 (2003).
[CrossRef]

J. I. Kim, C. Y. Park, J. Y. Yeom, E. B. Kim, and T. H. Yoon, "Frequency-stabilized high-power violet laser diode with an ytterbium hollow cathod lamp," Opt. Lett. 28, 245-247 (2003).
[CrossRef] [PubMed]

O. N. Prudnikov and E. Arimondo, "Sub-Doppler laser cooling on combined optical transitions," J. Opt. Soc. Am. B 20, 909-914 (2003).
[CrossRef]

2001 (1)

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

1999 (1)

U. Shim, J. Kim, and W. Jhe, "Saturated absorption spectroscopy in the presence of a longitudinal magnetic field," J. Korean Phys. Soc. 35, 222-225 (1999).

1998 (1)

1996 (1)

L. Windholz, C. Krenn, G. Gwehenberger, M. Musso, and B. Schnizer, "Atomic transfer between hyperfine levels in combined electric and magnetic fields," Phys. Rev. Lett. 77, 2190-2193 (1996).
[CrossRef] [PubMed]

1995 (1)

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

1992 (2)

M. Musso, "Hyperfine structure of atoms in combined external fields," Z. Phys. D: At., Mol. Clusters 24, 203-210 (1992).
[CrossRef]

K. B. MacAdam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

1988 (1)

L. Windholz and M. Musso, "Zeeman and Paschen-Back-effect of the hyperfine structure of the sodium D2-line," Z. Phys. D: At., Mol. Clusters 8, 239-249 (1988).
[CrossRef]

1983 (1)

J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983).
[CrossRef]

1980 (1)

J. H. M. Neijzen and A. Dönszelmann, "Hyperfine structure and isotope shift measurements in neutral gallium and indium with a pulsed dye laser," Physica A 98C, 235-241 (1980).

1966 (1)

D. W. Allan, "Statistics of atomic frequency standards," Proc. IEEE 54, 221-231 (1966).
[CrossRef]

1956 (1)

A. Lurio and A. G. Prodell, "Hfs separations and Hfs anomalies in the P1/22 state of Ga69, Ga71, Tl203, and Tl205," Phys. Rev. 101, 79-83 (1956).
[CrossRef]

1954 (1)

R. T. Daly and J. H. Holloway, "Nuclear magnetic octupole moments of the stable gallium isotopes," Phys. Rev. 96, 539-540 (1954).
[CrossRef]

Allan, D. W.

D. W. Allan, "Statistics of atomic frequency standards," Proc. IEEE 54, 221-231 (1966).
[CrossRef]

Arimondo, E.

O. M. Maragò, B. Fazio, P. G. Gucciardi, and E. Arimondo, "Atomic gallium laser spectroscopy with violet/blue diode lasers," Appl. Phys. B 77, 809-815 (2003).
[CrossRef]

O. N. Prudnikov and E. Arimondo, "Sub-Doppler laser cooling on combined optical transitions," J. Opt. Soc. Am. B 20, 909-914 (2003).
[CrossRef]

Beverini, N.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Corney, A.

A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, Oxford, UK, 1977).

Corwin, K. L.

Daly, R. T.

R. T. Daly and J. H. Holloway, "Nuclear magnetic octupole moments of the stable gallium isotopes," Phys. Rev. 96, 539-540 (1954).
[CrossRef]

Dönszelmann, A.

J. H. M. Neijzen and A. Dönszelmann, "Hyperfine structure and isotope shift measurements in neutral gallium and indium with a pulsed dye laser," Physica A 98C, 235-241 (1980).

Epstein, R. J.

Erez, G.

J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983).
[CrossRef]

Esslinger, T.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Fasol, G.

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer-Verlag, Berlin, 1997).
[CrossRef]

Fazio, B.

O. M. Maragò, B. Fazio, P. G. Gucciardi, and E. Arimondo, "Atomic gallium laser spectroscopy with violet/blue diode lasers," Appl. Phys. B 77, 809-815 (2003).
[CrossRef]

Gucciardi, P. G.

O. M. Maragò, B. Fazio, P. G. Gucciardi, and E. Arimondo, "Atomic gallium laser spectroscopy with violet/blue diode lasers," Appl. Phys. B 77, 809-815 (2003).
[CrossRef]

Gwehenberger, G.

L. Windholz, C. Krenn, G. Gwehenberger, M. Musso, and B. Schnizer, "Atomic transfer between hyperfine levels in combined electric and magnetic fields," Phys. Rev. Lett. 77, 2190-2193 (1996).
[CrossRef] [PubMed]

Hand, C. F.

Hansch, T. W.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Hemmerich, A.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Holloway, J. H.

R. T. Daly and J. H. Holloway, "Nuclear magnetic octupole moments of the stable gallium isotopes," Phys. Rev. 96, 539-540 (1954).
[CrossRef]

Jhe, W.

U. Shim, J. Kim, and W. Jhe, "Saturated absorption spectroscopy in the presence of a longitudinal magnetic field," J. Korean Phys. Soc. 35, 222-225 (1999).

Kim, E. B.

Kim, J.

U. Shim, J. Kim, and W. Jhe, "Saturated absorption spectroscopy in the presence of a longitudinal magnetic field," J. Korean Phys. Soc. 35, 222-225 (1999).

Kim, J. I.

Konig, W.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Krenn, C.

L. Windholz, C. Krenn, G. Gwehenberger, M. Musso, and B. Schnizer, "Atomic transfer between hyperfine levels in combined electric and magnetic fields," Phys. Rev. Lett. 77, 2190-2193 (1996).
[CrossRef] [PubMed]

Lavi, S.

J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983).
[CrossRef]

Lu, Z.

Lurio, A.

A. Lurio and A. G. Prodell, "Hfs separations and Hfs anomalies in the P1/22 state of Ga69, Ga71, Tl203, and Tl205," Phys. Rev. 101, 79-83 (1956).
[CrossRef]

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Maccioni, E.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Maragò, O. M.

O. M. Maragò, B. Fazio, P. G. Gucciardi, and E. Arimondo, "Atomic gallium laser spectroscopy with violet/blue diode lasers," Appl. Phys. B 77, 809-815 (2003).
[CrossRef]

Marsili, P.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Meschede, D.

D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-R38 (2003).
[CrossRef]

Metcalf, H.

D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-R38 (2003).
[CrossRef]

Miron, E.

J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983).
[CrossRef]

Musso, M.

L. Windholz, C. Krenn, G. Gwehenberger, M. Musso, and B. Schnizer, "Atomic transfer between hyperfine levels in combined electric and magnetic fields," Phys. Rev. Lett. 77, 2190-2193 (1996).
[CrossRef] [PubMed]

M. Musso, "Hyperfine structure of atoms in combined external fields," Z. Phys. D: At., Mol. Clusters 24, 203-210 (1992).
[CrossRef]

L. Windholz and M. Musso, "Zeeman and Paschen-Back-effect of the hyperfine structure of the sodium D2-line," Z. Phys. D: At., Mol. Clusters 8, 239-249 (1988).
[CrossRef]

Nakamura, S.

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer-Verlag, Berlin, 1997).
[CrossRef]

Neijzen, J. H. M.

J. H. M. Neijzen and A. Dönszelmann, "Hyperfine structure and isotope shift measurements in neutral gallium and indium with a pulsed dye laser," Physica A 98C, 235-241 (1980).

Oreg, J.

J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983).
[CrossRef]

Park, C. Y.

Prodell, A. G.

A. Lurio and A. G. Prodell, "Hfs separations and Hfs anomalies in the P1/22 state of Ga69, Ga71, Tl203, and Tl205," Phys. Rev. 101, 79-83 (1956).
[CrossRef]

Prudnikov, O. N.

Ricci, L.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Ruffini, A.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Schnizer, B.

L. Windholz, C. Krenn, G. Gwehenberger, M. Musso, and B. Schnizer, "Atomic transfer between hyperfine levels in combined electric and magnetic fields," Phys. Rev. Lett. 77, 2190-2193 (1996).
[CrossRef] [PubMed]

Shim, U.

U. Shim, J. Kim, and W. Jhe, "Saturated absorption spectroscopy in the presence of a longitudinal magnetic field," J. Korean Phys. Soc. 35, 222-225 (1999).

Sobelmann, I. I.

I. I. Sobelmann, Atomic Spectra and Radiative Transitions, (Springer, Berlin, 1979).
[CrossRef]

Sorrentino, F.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Strauss, M.

J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983).
[CrossRef]

Tenenbaum, J.

J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983).
[CrossRef]

Vuletic, V.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Weidemuller, M.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Wieman, C. E.

Windholz, L.

L. Windholz, C. Krenn, G. Gwehenberger, M. Musso, and B. Schnizer, "Atomic transfer between hyperfine levels in combined electric and magnetic fields," Phys. Rev. Lett. 77, 2190-2193 (1996).
[CrossRef] [PubMed]

L. Windholz and M. Musso, "Zeeman and Paschen-Back-effect of the hyperfine structure of the sodium D2-line," Z. Phys. D: At., Mol. Clusters 8, 239-249 (1988).
[CrossRef]

Yeom, J. Y.

Yoon, T. H.

Zimmermann, C.

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Am. J. Phys. (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

O. M. Maragò, B. Fazio, P. G. Gucciardi, and E. Arimondo, "Atomic gallium laser spectroscopy with violet/blue diode lasers," Appl. Phys. B 77, 809-815 (2003).
[CrossRef]

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, "Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell," Appl. Phys. B 73, 133-138 (2001).
[CrossRef]

J. Korean Phys. Soc. (1)

U. Shim, J. Kim, and W. Jhe, "Saturated absorption spectroscopy in the presence of a longitudinal magnetic field," J. Korean Phys. Soc. 35, 222-225 (1999).

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

J. Tenenbaum, E. Miron, S. Lavi, M. Strauss, J. Oreg, and G. Erez, "Velocity changing collisions in saturation absorption of U," J. Phys. B 16, 4543-4553 (1983).
[CrossRef]

J. Phys. D (1)

D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-R38 (2003).
[CrossRef]

Opt. Commun. (1)

L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch, "A compact grating-stabilized diode-laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (2)

A. Lurio and A. G. Prodell, "Hfs separations and Hfs anomalies in the P1/22 state of Ga69, Ga71, Tl203, and Tl205," Phys. Rev. 101, 79-83 (1956).
[CrossRef]

R. T. Daly and J. H. Holloway, "Nuclear magnetic octupole moments of the stable gallium isotopes," Phys. Rev. 96, 539-540 (1954).
[CrossRef]

Phys. Rev. Lett. (1)

L. Windholz, C. Krenn, G. Gwehenberger, M. Musso, and B. Schnizer, "Atomic transfer between hyperfine levels in combined electric and magnetic fields," Phys. Rev. Lett. 77, 2190-2193 (1996).
[CrossRef] [PubMed]

Physica A (1)

J. H. M. Neijzen and A. Dönszelmann, "Hyperfine structure and isotope shift measurements in neutral gallium and indium with a pulsed dye laser," Physica A 98C, 235-241 (1980).

Proc. IEEE (1)

D. W. Allan, "Statistics of atomic frequency standards," Proc. IEEE 54, 221-231 (1966).
[CrossRef]

Z. Phys. D: At., Mol. Clusters (2)

M. Musso, "Hyperfine structure of atoms in combined external fields," Z. Phys. D: At., Mol. Clusters 24, 203-210 (1992).
[CrossRef]

L. Windholz and M. Musso, "Zeeman and Paschen-Back-effect of the hyperfine structure of the sodium D2-line," Z. Phys. D: At., Mol. Clusters 8, 239-249 (1988).
[CrossRef]

Other (4)

A. Corney, Atomic and Laser Spectroscopy (Oxford U. Press, Oxford, UK, 1977).

I. I. Sobelmann, Atomic Spectra and Radiative Transitions, (Springer, Berlin, 1979).
[CrossRef]

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer-Verlag, Berlin, 1997).
[CrossRef]

Handbook of Chemistry and Physics, D.R.Lide, ed., 85th ed. (CRC Press, Boca Raton, Fla., 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Simplified Grotrian diagram and decay rates of the investigated gallium atom fine structure levels. The two transitions are separately addressed with different laser diodes. (b), (c), and (d) are the calculated magnetic-field-induced splitting of the hyperfine structure of 5 s 2 S 1 2 , 4 p 2 P 1 2 , and 4 p 2 P 3 2 for the Ga 69 isotope in a magnetic field of variable strength. Similar data were obtained for Ga 71 and then used to simulate the dichroic signal for both transitions.

Fig. 2
Fig. 2

Generation of the dichroic theoretical signal for the transition P 3 2 S 1 2 of a gallium atom in a magnetic field of 30 mT . (a) Absorption coefficients α ± ( ω ) obtained from the simulation. (b) By subtraction of the two absorption signals an error signal P ( ω ) is generated.

Fig. 3
Fig. 3

Schematic setup used for the frequency stabilization of blue and violet laser diodes (ECDLs) by the DAVL technique, by use of a gallium galvatron as atomic reference. The light from the ECDLs passes through the galvatron and then is split in two circular polarization states σ + and σ using a quarter-wave plate and polarizing beam splitter cubes (PBS). The signals are collected by two double photodiodes (DPDs) then subtracted and sent to the servo lock circuits. PM are permanet magnets that produce a magnetic field of 80 mT ; BS are beam splitters, and the output power is 15 mW for both 403 nm and 417 nm .

Fig. 4
Fig. 4

(a) and (c) show the comparison between the theoretical and experimental DAVL signals for the P 3 2 S 1 2 and P 1 2 S 1 2 transitions, respectively. The solid curves correspond to the experimental signals when a magnetic field of 80 mT is applied to the Galvatron. The dotted curves represent the theoretical signal obtained from our simulation for a magnetic field of 80 mT , and the dashed curves are the theoretical DAVL signals obtained for a magnetic field of 30 mT . (b) and (d) are the fluorescence spectra collected on the atomic beam for both transitions showing the resolved hyperfine structure.[6] The frequency calibration is obtained using a confocal Fabry–Perot interferometer with a free spectral range of 300 MHz .

Fig. 5
Fig. 5

Square root Allan variance as a function of the averaging time. We compare the error signal fluctuations when the ECDL is locked and unlocked. The resulting ECDL servo loop stability was of 1 MHz at 1 - s averaging time.

Tables (1)

Tables Icon

Table 1 Gyromagnetic Factors and Hyperfine Constants for the Two Gallium Isotopes

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α ± ( ω ) = i A i ± N Δ π exp [ ( ω ω i ± ) 2 Δ 2 ] ,
P ( ω ) = P 0 2 { exp [ α + ( ω ) L ] exp [ α ( ω ) L ] } ,
γ I γ J I J M I M J H hfs + H mag γ I γ J I J M I M J ,
Φ = M I , M J γ I γ J I J M I M J γ I γ J I J M I M J Φ = M I , M J α ( B ) γ I γ J I J M I M J ,
Φ D q Φ = γ J D γ J M I , M I , M J , M J ( 1 ) J M J ( J 1 J M J q M J ) a ( B ) a ( B ) δ M I , M I .
S ( γ J ; γ J ) = S ( γ J ; γ J ) = γ J D γ J 2 = M J , M J γ J M J D γ J M J 2 ,
P exc , Φ Φ , rel = q = 1 + 1 e k , q * Φ D q Φ 2 S ( γ J ; γ J ) ,
σ y ( τ ) = [ 1 2 ( 2 N + 1 ) k = 1 N 1 ( y ¯ k + 1 y ¯ k ) 2 ] 1 2 ,

Metrics