Abstract

We demonstrate group-velocity-matched second-harmonic generation of 80-fs pulses under noncollinear quasi-phase-matching (QPM) geometry. Second-harmonic pulses of 100-fs duration, 11-nm bandwidth, and 0.78-μm center wavelength were generated with 50% efficiency with 3-mm-long periodically poled lithium niobate. We have also numerically studied the dependence of conversion efficiency and pulse durations on pump intensity, propagation length, and noncollinear angle. It is confirmed that our group-velocity-matching scheme requires a much lower pump intensity than the conventional collinear QPM scheme.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Sidick, A. Knoesen, and A. Dienes, "Ultrashort-pulse second-harmonic generation. I. Transform-limited fundamental pulses," J. Opt. Soc. Am. B 12, 1704-1712 (1995).
    [CrossRef]
  2. E. Sidick, A. Dienes, and A. Knoesen, "Ultrashort-pulse second-harmonic generation. II. Non-transform-limited fundamental pulses," J. Opt. Soc. Am. B 12, 1713-1722 (1995).
    [CrossRef]
  3. A. M. Weiner, A. M. Kan'an, and D. E. Leaird, "High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal," Opt. Lett. 23, 1441-1443 (1998).
    [CrossRef]
  4. B. Agate, A. J. Kemp, C. T. A. Brown, and W. Sibbett, "Efficient, high repetition-rate femtosecond blue source using a compact Cr:LiSAF laser," Opt. Express 10, 824-831 (2002), www.opticsexpress.com.
    [CrossRef] [PubMed]
  5. S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, "Second-harmonic generation with focused beams under conditions of large group-velocity mismatch," J. Opt. Soc. Am. B 21, 591-598 (2004).
    [CrossRef]
  6. W. J. Alford and A. V. Smith, "Frequency-doubling broadband light in multiple crystals," J. Opt. Soc. Am. B 18, 515-523 (2001).
    [CrossRef]
  7. O. E. Martinez, "Achromatic phase matching for second harmonic generation of femtosecond pulses," IEEE J. Quantum Electron. 25, 2464-2468 (1989).
    [CrossRef]
  8. G. Szabo and Z. Bor, "Broadband frequency doubler for femtoecond pulses," Appl. Phys. B. 50, 51-54 (1990).
    [CrossRef]
  9. M. A. Arbore, O. Marco, and M. M. Fejer, "Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings," Opt. Lett. 22, 865-867 (1997).
    [CrossRef] [PubMed]
  10. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, "Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate," Opt. Lett. 22, 1341-1343 (1997).
    [CrossRef]
  11. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping," J. Opt. Soc. Am. B 17, 304-318 (2000).
    [CrossRef]
  12. K. Hayata and M. Koshiba, "Group-velocity-matched second-harmonic generation: an efficient scheme for femtosecond ultraviolet pulse generation in periodically domain-inverted beta-BaB2O4," Appl. Phys. Lett. 62, 2188-2190 (1993).
    [CrossRef]
  13. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communication band," Opt. Lett. 27, 1046-1048 (2002).
    [CrossRef]
  14. N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
    [CrossRef]
  15. S. Ashihara, T. Shimura, and K. Kuroda, "Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings," J. Opt. Soc. Am. B 20, 853-856 (2003).
    [CrossRef]
  16. G. I. Stegeman, D. J. Hagan, and L. Torner, "chi(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
    [CrossRef]
  17. L. Torner and A. Barthelemy, "Quadratic solitons: recent developments," IEEE J. Quantum Electron. 39, 22-30 (2003).
    [CrossRef]
  18. F. Wise, L. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2003).
    [CrossRef]
  19. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, "Soliton compression of femtosecond pulses in quadratic media," J. Opt. Soc. Am. B 19, 2505-2510 (2002).
    [CrossRef]
  20. S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
    [CrossRef]
  21. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996).
  22. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268-2294 (1997).
    [CrossRef]
  23. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
    [CrossRef]
  24. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]

2004 (2)

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, "Second-harmonic generation with focused beams under conditions of large group-velocity mismatch," J. Opt. Soc. Am. B 21, 591-598 (2004).
[CrossRef]

2003 (4)

S. Ashihara, T. Shimura, and K. Kuroda, "Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings," J. Opt. Soc. Am. B 20, 853-856 (2003).
[CrossRef]

L. Torner and A. Barthelemy, "Quadratic solitons: recent developments," IEEE J. Quantum Electron. 39, 22-30 (2003).
[CrossRef]

F. Wise, L. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2003).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

2002 (3)

2001 (1)

2000 (1)

1998 (1)

1997 (3)

1996 (2)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, "chi(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

1995 (2)

1993 (1)

K. Hayata and M. Koshiba, "Group-velocity-matched second-harmonic generation: an efficient scheme for femtosecond ultraviolet pulse generation in periodically domain-inverted beta-BaB2O4," Appl. Phys. Lett. 62, 2188-2190 (1993).
[CrossRef]

1990 (1)

G. Szabo and Z. Bor, "Broadband frequency doubler for femtoecond pulses," Appl. Phys. B. 50, 51-54 (1990).
[CrossRef]

1989 (1)

O. E. Martinez, "Achromatic phase matching for second harmonic generation of femtosecond pulses," IEEE J. Quantum Electron. 25, 2464-2468 (1989).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Agate, B.

Alford, W. J.

Arbore, M. A.

Ashihara, S.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

S. Ashihara, T. Shimura, and K. Kuroda, "Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings," J. Opt. Soc. Am. B 20, 853-856 (2003).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, "Soliton compression of femtosecond pulses in quadratic media," J. Opt. Soc. Am. B 19, 2505-2510 (2002).
[CrossRef]

Barthelemy, A.

L. Torner and A. Barthelemy, "Quadratic solitons: recent developments," IEEE J. Quantum Electron. 39, 22-30 (2003).
[CrossRef]

Bor, Z.

G. Szabo and Z. Bor, "Broadband frequency doubler for femtoecond pulses," Appl. Phys. B. 50, 51-54 (1990).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Brown, C. T.

Cha, M.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communication band," Opt. Lett. 27, 1046-1048 (2002).
[CrossRef]

Chou, M. H.

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

Diels, J. C.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996).

Dienes, A.

Fejer, M. M.

Fermann, M.

Galvanauskas, A.

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, "chi(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

Harter, D.

Hayata, K.

K. Hayata and M. Koshiba, "Group-velocity-matched second-harmonic generation: an efficient scheme for femtosecond ultraviolet pulse generation in periodically domain-inverted beta-BaB2O4," Appl. Phys. Lett. 62, 2188-2190 (1993).
[CrossRef]

Imeshev, G.

Ito, R.

Kan'an, A. M.

Kemp, A. J.

Kitamoto, A.

Kitamura, K.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Knoesen, A.

Kondo, T.

Koshiba, M.

K. Hayata and M. Koshiba, "Group-velocity-matched second-harmonic generation: an efficient scheme for femtosecond ultraviolet pulse generation in periodically domain-inverted beta-BaB2O4," Appl. Phys. Lett. 62, 2188-2190 (1993).
[CrossRef]

Koynov, K.

Kurimura, S.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communication band," Opt. Lett. 27, 1046-1048 (2002).
[CrossRef]

Kuroda, K.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

S. Ashihara, T. Shimura, and K. Kuroda, "Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings," J. Opt. Soc. Am. B 20, 853-856 (2003).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, "Soliton compression of femtosecond pulses in quadratic media," J. Opt. Soc. Am. B 19, 2505-2510 (2002).
[CrossRef]

Leaird, D. E.

Liu, X.

F. Wise, L. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2003).
[CrossRef]

Marco, O.

Martinez, O. E.

O. E. Martinez, "Achromatic phase matching for second harmonic generation of femtosecond pulses," IEEE J. Quantum Electron. 25, 2464-2468 (1989).
[CrossRef]

Nishina, J.

Qian, L.

F. Wise, L. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2003).
[CrossRef]

Ro, J. H.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communication band," Opt. Lett. 27, 1046-1048 (2002).
[CrossRef]

Rudolph, W.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996).

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

Saltiel, S. M.

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

Shimura, T.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

S. Ashihara, T. Shimura, and K. Kuroda, "Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings," J. Opt. Soc. Am. B 20, 853-856 (2003).
[CrossRef]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, "Soliton compression of femtosecond pulses in quadratic media," J. Opt. Soc. Am. B 19, 2505-2510 (2002).
[CrossRef]

Shirane, M.

Shoji, I.

Sibbett, W.

Sidick, E.

Smith, A. V.

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, "chi(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

Szabo, G.

G. Szabo and Z. Bor, "Broadband frequency doubler for femtoecond pulses," Appl. Phys. B. 50, 51-54 (1990).
[CrossRef]

Taira, T.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communication band," Opt. Lett. 27, 1046-1048 (2002).
[CrossRef]

Torner, L.

L. Torner and A. Barthelemy, "Quadratic solitons: recent developments," IEEE J. Quantum Electron. 39, 22-30 (2003).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, "chi(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

Weiner, A. M.

Wise, F.

F. Wise, L. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2003).
[CrossRef]

Yu, N. E.

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communication band," Opt. Lett. 27, 1046-1048 (2002).
[CrossRef]

Appl. Phys. B. (1)

G. Szabo and Z. Bor, "Broadband frequency doubler for femtoecond pulses," Appl. Phys. B. 50, 51-54 (1990).
[CrossRef]

Appl. Phys. Lett. (3)

K. Hayata and M. Koshiba, "Group-velocity-matched second-harmonic generation: an efficient scheme for femtosecond ultraviolet pulse generation in periodically domain-inverted beta-BaB2O4," Appl. Phys. Lett. 62, 2188-2190 (1993).
[CrossRef]

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, and T. Taira, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

L. Torner and A. Barthelemy, "Quadratic solitons: recent developments," IEEE J. Quantum Electron. 39, 22-30 (2003).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Stryland, and M. Sheik-Bahae, "Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids," IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

O. E. Martinez, "Achromatic phase matching for second harmonic generation of femtosecond pulses," IEEE J. Quantum Electron. 25, 2464-2468 (1989).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

F. Wise, L. Qian, and X. Liu, "Applications of cascaded quadratic nonlinearities to femtosecond pulse generation," J. Nonlinear Opt. Phys. Mater. 11, 317-338 (2003).
[CrossRef]

J. Opt. Soc. Am. B (8)

Opt. Express (1)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, "chi(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons," Opt. Quantum Electron. 28, 1691-1740 (1996).
[CrossRef]

Other (1)

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Wave vector diagram of the noncollinear QPM interaction: k 1 , 2 , the wave vector of the fundamental and the SH waves, respectively; K, the grating vector. (b) Schematic of the GV-matched SHG: combination of pulse-front tilt and noncollinear QPM interaction compensates the GV mismatch.

Fig. 2
Fig. 2

Experimental setup: CL, cylindrical lens (rectangle, vertical focusing; the others, horizontal focusing); OPA, optical parametric amplifier.

Fig. 3
Fig. 3

Measured spectral intensities for (a) the fundamental and (b) the SH pulses. Fundamental average power was varied as 0.06, 0.25, and 1.0 mW. The SH spectrum did not show strong spectral narrowing, with almost the same FWHM bandwidth of 11 nm for different pumping powers.

Fig. 4
Fig. 4

(a) Measured SH duration versus fundamental average power. (b) Measured SH autocorrelation trace at low intensity, indicating 100-fs duration at FWHM.

Fig. 5
Fig. 5

Internal SHG conversion efficiency plotted against internal fundamental average power for 3.0- and 1.5-mm devices. The symbols indicate the measured data (circle, L = 3.0 mm , triangle, L = 1.5 mm ), and the two curves indicate the simulated data (solid, L = 3.0 mm ; dashed; L = 1.5 mm ). Simulated conversion efficiencies are expanded by-six times along the lateral axis to fit well with the experimental data.

Fig. 6
Fig. 6

Calculated conversion efficiency for the GV-matched scheme of (a) R = 0.2 , L = 4.0 mm ; (b) R = 0.2 , L = 2.0 mm ; (c) R = 0.5 , L = 4.0 mm ; (d) R = 0.5 , L = 2.0 mm ; and (e) for the conventional scheme of L = 0.30 mm .

Fig. 7
Fig. 7

Contour plot of the calculated conversion efficiency as a function of fundamental peak intensity (longitudinal axis) and propagation length (transverse axis) for (a) R = 0.5 and (b) R = 0.2 . The dashed curves correspond to Γ 2 L 2 = 6.7 for both R = 0.5 and 0.2.

Fig. 8
Fig. 8

Contour plot of the calculated SH pulse duration as a function of fundamental peak intensity (longitudinal axis) and propagation length (transverse axis) for (a) R = 0.5 and (b) R = 0.2 . The dashed curves correspond to Γ 2 L 2 = 6.7 for both R = 0.5 and 0.2.

Fig. 9
Fig. 9

R dependence of the conversion efficiency for (a) I p = 100 MW cm 2 , L = 5.0 mm ; (b) I p = 1 GW cm 2 , L = 1.0 mm ; and (c) I p = 100 MW cm 2 , L = 1.0 mm .

Fig. 10
Fig. 10

(a) Spectral and (b) temporal intensity profiles of the SH pulses calculated under the condition of R = 0.2 , I p = 500 MW cm 2 , L = 2.5 mm .

Metrics