Abstract

It is demonstrated, for the first time to our knowledge, that torsion characteristics of resonant wavelength of long-period fiber gratings (LPFGs) induced by high-frequency CO2 laser pulses depend strongly on the twist directions. That is, the resonant wavelength shifts linearly toward the longer wavelength as the LPFG is twisted clockwise, whereas it shifts linearly toward the shorter wavelength as the LPFG is twisted anticlockwise. On the other hand, the loss peak amplitude decreases gradually whether the LPFG is twisted clockwise or anticlockwise. If the twisted fiber is much longer than the twisted LPFG, the resonant wavelength shifts wavelike toward the longer and shorter wavelength as the LPFG is twisted clockwise and anticlockwise, respectively, and the loss peak amplitude decreases wavelike with the twist rate applied. An asymmetric refractive-index distribution exists within the cross section of the LPFG fabricated by high-frequency CO2 laser pulses, which results in obvious linear birefringence in the LPFG. The right- and left-rotatory elliptical birefringence are induced when the LPFG with a linear birefringence is twisted clockwise and anticlockwise, respectively. So the twist-induced right- and left-rotatory elliptical birefringence in the LPFG show that the shift of resonant wavelength is dependent on the twist directions. The twist-induced circular birefringence in the fiber shows that the resonant wavelength and amplitude of the LPFG change wavelike.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguide: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
    [CrossRef]
  3. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003).
    [CrossRef]
  4. V. Bhatia and A. M. Vengsarkkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  5. G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
    [CrossRef]
  6. C. Y. Lin and L. A. Wang, "Loss-tunable long period fibre grating made from etched corrugation structure," Electron. Lett. 35, 1872-1873 (1999).
    [CrossRef]
  7. S. In, C. Chung, and H. Lee, "The resonance wavelength-tuning characteristic of arc-induced by diameter modulation," in Proceedings of 15th Optical Fiber Sensors Conference Technical Digest (IEEE Press, Piscataway, N.J., 2002), pp. 131-134
  8. Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and A.-Z. Hu, "A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses," IEEE Photonics Technol. Lett. 15, 251-253 (2003).
    [CrossRef]
  9. Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and X. K. Zeng, "Bend-insensitive long-period grating sensors," Opt. Lasers Eng. 41, 233-239 (2004).
    [CrossRef]
  10. Y. P. Wang and Y. J. Rao, "Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously," Electron. Lett. 40, 164-166 (2004).
    [CrossRef]
  11. Y.-P. Wang and Y.-J. Rao, "CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre," Electron. Lett. 40, 1101-1102 (2004).
    [CrossRef]
  12. H. S. Ryu, Y. Park, S. T. Oh, Y. Chung, and D. Y. Kim, "Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating," Opt. Lett. 28, 155-157 (2003).
    [CrossRef] [PubMed]
  13. R. Ulrich and A. Simon, "Polarization optics of twisted single-mode fibers," Appl. Opt. 18, 2241-2251 (1979).
    [CrossRef] [PubMed]
  14. T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, "Generalized expression for the growth of long period gratings," IEEE Photonics Technol. Lett. 10, 1449-1451 (1998).
    [CrossRef]

2004 (3)

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and X. K. Zeng, "Bend-insensitive long-period grating sensors," Opt. Lasers Eng. 41, 233-239 (2004).
[CrossRef]

Y. P. Wang and Y. J. Rao, "Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously," Electron. Lett. 40, 164-166 (2004).
[CrossRef]

Y.-P. Wang and Y.-J. Rao, "CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre," Electron. Lett. 40, 1101-1102 (2004).
[CrossRef]

2003 (3)

2000 (1)

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

1999 (1)

C. Y. Lin and L. A. Wang, "Loss-tunable long period fibre grating made from etched corrugation structure," Electron. Lett. 35, 1872-1873 (1999).
[CrossRef]

1998 (1)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, "Generalized expression for the growth of long period gratings," IEEE Photonics Technol. Lett. 10, 1449-1451 (1998).
[CrossRef]

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

1979 (1)

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguide: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Anemogiannis, E.

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Bhatia, V.

V. Bhatia and A. M. Vengsarkkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Braiwish, M. I.

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Chung, C.

S. In, C. Chung, and H. Lee, "The resonance wavelength-tuning characteristic of arc-induced by diameter modulation," in Proceedings of 15th Optical Fiber Sensors Conference Technical Digest (IEEE Press, Piscataway, N.J., 2002), pp. 131-134

Chung, Y.

Davis, D. D.

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguide: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Garett, B. D.

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Gaylord, T. K.

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Glytsis, E. N.

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Haggans, C. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, "Generalized expression for the growth of long period gratings," IEEE Photonics Technol. Lett. 10, 1449-1451 (1998).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguide: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Hu, A.-Z.

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and A.-Z. Hu, "A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses," IEEE Photonics Technol. Lett. 15, 251-253 (2003).
[CrossRef]

In, S.

S. In, C. Chung, and H. Lee, "The resonance wavelength-tuning characteristic of arc-induced by diameter modulation," in Proceedings of 15th Optical Fiber Sensors Conference Technical Digest (IEEE Press, Piscataway, N.J., 2002), pp. 131-134

Jackson, M. A.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, "Generalized expression for the growth of long period gratings," IEEE Photonics Technol. Lett. 10, 1449-1451 (1998).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguide: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguide: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Kim, D. Y.

Lee, H.

S. In, C. Chung, and H. Lee, "The resonance wavelength-tuning characteristic of arc-induced by diameter modulation," in Proceedings of 15th Optical Fiber Sensors Conference Technical Digest (IEEE Press, Piscataway, N.J., 2002), pp. 131-134

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Lin, C. Y.

C. Y. Lin and L. A. Wang, "Loss-tunable long period fibre grating made from etched corrugation structure," Electron. Lett. 35, 1872-1873 (1999).
[CrossRef]

MacDougall, T. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, "Generalized expression for the growth of long period gratings," IEEE Photonics Technol. Lett. 10, 1449-1451 (1998).
[CrossRef]

Oh, S. T.

Park, Y.

Pilevar, S.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, "Generalized expression for the growth of long period gratings," IEEE Photonics Technol. Lett. 10, 1449-1451 (1998).
[CrossRef]

Ran, Z.-L.

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and X. K. Zeng, "Bend-insensitive long-period grating sensors," Opt. Lasers Eng. 41, 233-239 (2004).
[CrossRef]

Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003).
[CrossRef]

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and A.-Z. Hu, "A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses," IEEE Photonics Technol. Lett. 15, 251-253 (2003).
[CrossRef]

Rao, Y. J.

Y. P. Wang and Y. J. Rao, "Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously," Electron. Lett. 40, 164-166 (2004).
[CrossRef]

Rao, Y.-J.

Y.-P. Wang and Y.-J. Rao, "CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre," Electron. Lett. 40, 1101-1102 (2004).
[CrossRef]

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and X. K. Zeng, "Bend-insensitive long-period grating sensors," Opt. Lasers Eng. 41, 233-239 (2004).
[CrossRef]

Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003).
[CrossRef]

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and A.-Z. Hu, "A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses," IEEE Photonics Technol. Lett. 15, 251-253 (2003).
[CrossRef]

Ryu, H. S.

Simon, A.

Spie, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Ulrich, R.

Van Wiggeren, G. D.

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Vengsarkkar, A. M.

Wang, L. A.

C. Y. Lin and L. A. Wang, "Loss-tunable long period fibre grating made from etched corrugation structure," Electron. Lett. 35, 1872-1873 (1999).
[CrossRef]

Wang, Y. P.

Y. P. Wang and Y. J. Rao, "Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously," Electron. Lett. 40, 164-166 (2004).
[CrossRef]

Wang, Y.-P.

Y.-P. Wang and Y.-J. Rao, "CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre," Electron. Lett. 40, 1101-1102 (2004).
[CrossRef]

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and X. K. Zeng, "Bend-insensitive long-period grating sensors," Opt. Lasers Eng. 41, 233-239 (2004).
[CrossRef]

Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003).
[CrossRef]

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and A.-Z. Hu, "A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses," IEEE Photonics Technol. Lett. 15, 251-253 (2003).
[CrossRef]

Zeng, X. K.

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and X. K. Zeng, "Bend-insensitive long-period grating sensors," Opt. Lasers Eng. 41, 233-239 (2004).
[CrossRef]

Zhu, T.

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and X. K. Zeng, "Bend-insensitive long-period grating sensors," Opt. Lasers Eng. 41, 233-239 (2004).
[CrossRef]

Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003).
[CrossRef]

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and A.-Z. Hu, "A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses," IEEE Photonics Technol. Lett. 15, 251-253 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguide: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Electron. Lett. (4)

Y. P. Wang and Y. J. Rao, "Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously," Electron. Lett. 40, 164-166 (2004).
[CrossRef]

Y.-P. Wang and Y.-J. Rao, "CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre," Electron. Lett. 40, 1101-1102 (2004).
[CrossRef]

G. D. Van Wiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000).
[CrossRef]

C. Y. Lin and L. A. Wang, "Loss-tunable long period fibre grating made from etched corrugation structure," Electron. Lett. 35, 1872-1873 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and A.-Z. Hu, "A novel tunable gain equalizer based on a long-period fiber grating written by high-frequency CO2 laser pulses," IEEE Photonics Technol. Lett. 15, 251-253 (2003).
[CrossRef]

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, "Generalized expression for the growth of long period gratings," IEEE Photonics Technol. Lett. 10, 1449-1451 (1998).
[CrossRef]

J. Lightwave Technol. (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Spie, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003).
[CrossRef]

Opt. Lasers Eng. (1)

Y.-P. Wang, Y.-J. Rao, Z.-L. Ran, T. Zhu, and X. K. Zeng, "Bend-insensitive long-period grating sensors," Opt. Lasers Eng. 41, 233-239 (2004).
[CrossRef]

Opt. Lett. (2)

Other (1)

S. In, C. Chung, and H. Lee, "The resonance wavelength-tuning characteristic of arc-induced by diameter modulation," in Proceedings of 15th Optical Fiber Sensors Conference Technical Digest (IEEE Press, Piscataway, N.J., 2002), pp. 131-134

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used to test torsion characteristics of LPFGs.

Fig. 2
Fig. 2

Transmission spectrum of the LPFG being free.

Fig. 3
Fig. 3

Resonant wavelength and amplitude change of the LPFG with the twist rate applied in the case of L L . (a)–(f) Resonant wavelength and amplitude of the loss peaks Pit1, Pit2, and Pit3, respectively: clockwise twist rate increasing (diamonds) and decreasing (triangles); absolute value of the anticlockwise twist rate increasing (squares) and decreasing (stars).

Fig. 4
Fig. 4

Resonant wavelength and amplitude change of the LPFG with the twist rate applied in the case of L L . (a) Resonant wavelength, (b) loss peak amplitude; clockwise twist rate increasing (diamonds); absolute value of the anticlockwise twist rate increasing (squares) and decreasing (triangles), respectively.

Fig. 5
Fig. 5

Schematic diagram of the asymmetric refractive-index profile within the cross section of the CO 2 -laser-induced LPFG.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ = β L ,
λ res m = ( n eff co n eff cl , m ) Λ [ 1 + ( δ n eff co δ n eff cl , m ) d λ D m d Λ ( n eff co n eff cl , m ) 2 ] ,

Metrics