Abstract

We report on the development of a freezing phase scheme for complete-field characterization and adaptive coherent control with a femtosecond pulse shaper. The operational principle is based on a concept that the highest peak intensity will correspond to a frozen phase state of all spectral components involved in a coherent optical pulse. Our experimental and theoretical results reveal this new scheme to be fast and immune to the noise and laser power fluctuation. The freezing phase method has been used to investigate three types of semiconductor saturable absorber Bragg reflector (SBR). The optical pulses reflected from the SBR can be distorted in the spectral phase by a minor structural change of the SBR devices and can be clearly resolved with our method. The technique is useful for a variety of applications that require complete-field characterization and adaptive coherent control on the same setup.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1992).
    [CrossRef] [PubMed]
  2. N. Dudovich, B. Orion, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature (London) 418, 512-515 (2002).
    [CrossRef]
  3. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature (London) 414, 57-60 (2001).
    [CrossRef]
  4. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  5. C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
    [CrossRef] [PubMed]
  6. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
    [CrossRef] [PubMed]
  7. W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: the dream is alive," Science 259, 1581-1589 (1993).
    [CrossRef] [PubMed]
  8. T. C. Weinacht, J. L. White, and P. H. Bucksbaum, "Toward strong field mode-selective chemistry," J. Phys. Chem. A 103, 10166-10168 (1999).
    [CrossRef]
  9. R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored strong-field laser pulses," Science 292, 709-713 (2001).
    [CrossRef] [PubMed]
  10. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
    [CrossRef]
  11. R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
    [CrossRef]
  12. D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
    [CrossRef]
  13. D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," J. Opt. Soc. Am. B 15, 1615-1619 (1998).
    [CrossRef]
  14. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm," Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
    [CrossRef]
  15. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, and S. Backus, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25, 587-589 (2000).
    [CrossRef]
  16. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998).
    [CrossRef]
  17. J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
    [CrossRef]
  18. M. M. Wefers and K. A. Nelson, "Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators," J. Opt. Soc. Am. B 12, 1343-1362 (1995).
    [CrossRef]
  19. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  20. U. Keller, "Recent developments in compact ultrafast lasers," Nature (London) 424, 831-838 (2003).
    [CrossRef]
  21. D. Kopt, G. Zhang, R. Fluck, M. Moser, and U. Keller, "All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources," Opt. Lett. 21, 486-488 (1996).
    [CrossRef]
  22. R.Trebino, ed., Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, Boston, Mass., 2002).

2003

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003), http://www.opticsexpress.org.
[CrossRef] [PubMed]

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

U. Keller, "Recent developments in compact ultrafast lasers," Nature (London) 424, 831-838 (2003).
[CrossRef]

2002

N. Dudovich, B. Orion, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature (London) 418, 512-515 (2002).
[CrossRef]

2001

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature (London) 414, 57-60 (2001).
[CrossRef]

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

2000

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, and S. Backus, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25, 587-589 (2000).
[CrossRef]

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
[CrossRef]

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

1999

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, "Toward strong field mode-selective chemistry," J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

1998

1997

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm," Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
[CrossRef]

D. Yelin, D. Meshulach, and Y. Silberberg, "Adaptive femtosecond pulse compression," Opt. Lett. 22, 1793-1795 (1997).
[CrossRef]

1996

1995

1993

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: the dream is alive," Science 259, 1581-1589 (1993).
[CrossRef] [PubMed]

1992

R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1992).
[CrossRef] [PubMed]

Arlt, S.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
[CrossRef]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Backus, S.

Bardeen, C. J.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
[CrossRef]

Bartels, R.

Baumann, B.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
[CrossRef]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm," Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Beach, N. M.

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Brixner, T.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature (London) 414, 57-60 (2001).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm," Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Bucksbaum, P. H.

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, "Toward strong field mode-selective chemistry," J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

Carpenter, S. D.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
[CrossRef]

Cruz, J. M.

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: the dream is alive," Science 259, 1581-1589 (1993).
[CrossRef] [PubMed]

Damrauer, N. H.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature (London) 414, 57-60 (2001).
[CrossRef]

Daniel, C.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

Dantus, M.

Dudovich, N.

N. Dudovich, B. Orion, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature (London) 418, 512-515 (2002).
[CrossRef]

Efimov, A.

Fluck, R.

Full, J.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

Gerber, G.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature (London) 414, 57-60 (2001).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm," Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

González, L.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

Judson, R. S.

R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1992).
[CrossRef] [PubMed]

Kano, S. S.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

Kapteyn, H. C.

Keller, U.

U. Keller, "Recent developments in compact ultrafast lasers," Nature (London) 424, 831-838 (2003).
[CrossRef]

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
[CrossRef]

D. Kopt, G. Zhang, R. Fluck, M. Moser, and U. Keller, "All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources," Opt. Lett. 21, 486-488 (1996).
[CrossRef]

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

Kopt, D.

Krause, J. L.

Kunde, J.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
[CrossRef]

Levis, R. J.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Lozovoy, V. V.

Lupulescu, C.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

Manz, J.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

Menkir, G. M.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

Merli, A.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

Meshulach, D.

Mizoguchi, R.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

Moores, M. D.

Morier-Genoud, F.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
[CrossRef]

Moser, M.

Murnane, M. M.

Nelson, K. A.

Niklaus, P.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature (London) 414, 57-60 (2001).
[CrossRef]

Onda, K.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

Orion, B.

N. Dudovich, B. Orion, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature (London) 418, 512-515 (2002).
[CrossRef]

Pastirk, I.

Rabitz, H.

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: the dream is alive," Science 259, 1581-1589 (1993).
[CrossRef] [PubMed]

R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1992).
[CrossRef] [PubMed]

Reitze, D. H.

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm," Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Siegner, U.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
[CrossRef]

Silberberg, Y.

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm," Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Vajda, S.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

Wada, A.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

Walowicz, K. A.

Warren, W. S.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
[CrossRef]

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: the dream is alive," Science 259, 1581-1589 (1993).
[CrossRef] [PubMed]

Weber, P. M.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
[CrossRef]

Wefers, M. M.

Weinacht, T. C.

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, "Toward strong field mode-selective chemistry," J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

White, J. L.

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, "Toward strong field mode-selective chemistry," J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

Wilson, K. R.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
[CrossRef]

Wöste, L.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

Yakovlev, V. V.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
[CrossRef]

Yelin, D.

Zeek, E.

Zhang, G.

Appl. Phys. B: Lasers Opt.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm," Appl. Phys. B: Lasers Opt. 65, 779-782 (1997).
[CrossRef]

Appl. Phys. Lett.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, "Adaptive feedback control of ultra-fast semiconductor nonlinearities," Appl. Phys. Lett. 77, 924-926 (2000).
[CrossRef]

Chem. Phys. Lett.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, "Feedback quantum control of molecular electronic population transfer," Chem. Phys. Lett. 280, 151-158 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

T. C. Weinacht, J. L. White, and P. H. Bucksbaum, "Toward strong field mode-selective chemistry," J. Phys. Chem. A 103, 10166-10168 (1999).
[CrossRef]

Nature (London)

N. Dudovich, B. Orion, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature (London) 418, 512-515 (2002).
[CrossRef]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, "Photoselective adaptive femtosecond quantum control in the liquid phase," Nature (London) 414, 57-60 (2001).
[CrossRef]

U. Keller, "Recent developments in compact ultrafast lasers," Nature (London) 424, 831-838 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, "Thinning out in optimized pulse shaping method using genetic algorithm," Rev. Sci. Instrum. 74, 2670-2674 (2003).
[CrossRef]

Science

R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored strong-field laser pulses," Science 292, 709-713 (2001).
[CrossRef] [PubMed]

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, "Deciphering the reaction dynamics underlying optical control laser fields," Science 299, 536-539 (2003).
[CrossRef] [PubMed]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: the dream is alive," Science 259, 1581-1589 (1993).
[CrossRef] [PubMed]

Other

R.Trebino, ed., Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, Boston, Mass., 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagrams showing successive freezing steps of a phase-distorted coherent optical pulse. For simplicity, the spectral phase profile of the optical pulse is represented with four spectral phase components.

Fig. 2
Fig. 2

Schematic of an adaptive pulse-shaping setup used in this study. The apparatus is comprised of an all-reflective 4 - f pulse shaper. Here Gr1 and Gr2 denote a pair of gratings; CM-1 and CM-2 are two concave reflectors with a 10 - cm focal length; SLM is a one-dimensional pixelated spatial light modulator; BBO is a 3 - mm -thick type-I β - Ba 2 B O 4 second-harmonic crystal; and PD is a photodiode detector.

Fig. 3
Fig. 3

Flow chart showing the procedure of the freezing phase scheme for a theoretical simulation or an experimental study.

Fig. 4
Fig. 4

(a) Time course of the maximum SH signal obtained during the freezing phase procedure with left-to-right scans of spatial light modulation pixels. Three time courses with the first, second, and third scans are presented from bottom to top. (b) The intensity profiles of a transform-limited pulse (TLP); input pulse with distorted phase (DP); and shaped pulses after first, second, and third freezing phase scans. (c) The spectral phase profile of the input pulse (open circles), compensating phase profile (crosses), and error phase profiles after the first (thin solid curve), second (short-dashed curve), and third (thick solid curve) freezing phase scans.

Fig. 5
Fig. 5

(a) Time courses of the maximum SH signal during the freezing phase process with center-to-two-sides scans of spatial light modulation pixels. The first and second scan are presented from bottom to top. (b) The intensity profiles of a transform-limited pulse (TLP), input pulse with distorted phase (DP), and the phase-compensated pulse after the first and second freezing phase scans. (c) The spectral phase profile of the input pulse (open circles), compensating phase profile (crosses), and error phase profiles after the first (thin solid curve) and second (short-dashed curve) freezing phase scans.

Fig. 6
Fig. 6

(a) Time course of the maximum SH intensity during the freezing phase procedure with a cascading thinning-out scheme. Six time courses with a 2 s to 64 s thinning-out scheme are presented from bottom to top. (b) The intensity profiles of a transform-limited pulse (TLP), phase-distorted input pulse (DP), and phase-compensated pulse after the first, second, and third freezing phase scans. (c) The spectral phase profile of the input pulse (open circles), compensating phase profile (crosses), and error phase profiles after 8 s (short-dashed curve), 32 s (dotted curve), and 128 s (thick solid curve) freezing phase scans.

Fig. 7
Fig. 7

Time courses of the SH signal as a function of the number of freezing steps with the cascading thinning-out scheme (solid curve), center-to-two-sides scan scheme (long-dashed curve), and left-to-right scan scheme (short-dashed curve).

Fig. 8
Fig. 8

(a) Measured SHG signal with an optical pulse reflected from a gold-coated mirror is plotted as a function of the phase retardation of the phase modulation group of three consecutive pixels and their corresponding wavelength in a 4 - f pulse-shaper apparatus. (b) Spectral phase sensitivity plot of SHG deduced from the FPA (open circles) and the optical pulse spectrum measured with FTIR spectroscopy (solid curve).

Fig. 9
Fig. 9

Calculated distribution of field strength (white color for zero and black color for maximum strength) is presented along with the device structures of saturable absorber Bragg reflectors with InAs QD or d-QW embedded in a (a) λ 4 -thick layer or (b) λ 2 -thick layer.

Fig. 10
Fig. 10

(a) Measured and (b) retrieved SHG FROG patterns of a femtosecond optical field at 1.25 μ m reflected from the QD λ 2 SBR and (c) the retrieved spectral phase profiles from d-QW (solid curve), QD λ 4 (long-dashed curve), and QD λ 2 (short-dashed curve) SHG FROG traces.

Fig. 11
Fig. 11

(a) Spectral profiles of optical pulses reflected from d-QW (open circles) deduced with the FPA. For comparison, the pulse spectral profiles from d-QW (solid curve), QD λ 4 (long-dashed curve), and QD λ 2 (short-dashed curve) measured with FTIR spectroscopy are also presented. (b) Spectral phase profiles of optical pulses reflected from a gold mirror (thin solid curve), d-QW (thick solid curve), InAs QD λ 4 (long-dashed curve), and InAs QD λ 2 (short-dashed curve) determined with the freezing phase scheme are shown. (c) The deduced group-delay time of the three SBR devices are plotted over the pulse spectral range.

Fig. 12
Fig. 12

Measured SHG is plotted as a function of the number of phase adjustments with the FPA (solid curve) and a genetic algorithm (GA, dashed curve).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = n = 0 N A n exp [ j ( ω 0 + 2 π n Δ ν F ) t + ϕ n ] .
E ( t ) = m = 1 M k = K m 0 K m t B k exp [ i ( ω 0 + 2 π k Δ ν F ) t + ϕ k + Φ m ] .
E p = exp ( i ω 0 t p ) m = 1 M k = K m 0 K m t B k exp [ i ( ϕ k + Φ m ) ] .
C j exp ( i θ j ) = m = 1 j 1 k = K m 0 K m t B k exp [ i ( ϕ k + Φ m ) ] + m = j + 1 M k = K m 0 K m t B k exp [ i ( ϕ k + Φ m ) ] ,
D j exp ( i ϑ j ) = k = K j 0 K j t B k exp [ i ( ϕ k + Φ j ) ] ,
I p = E p 2 = C j 2 + D j 2 + 2 C j D j cos ( θ j ϑ j ) .

Metrics